
Chapter 2: Drawing Basic Shapes. Page 15

Chapter 2: Drawing Basic Shapes.

In this chapter we will be getting graphical. You will learn how to draw
rectangles, circles, lines and points of various colors. These programs will get
more and more complex, so you will also learn how to save your programs to
long term storage and how to load them back in so you can run them again
or change them.

Drawing Rectangles and Circles:

Let's start the graphics off by writing a graphical program that will draw a
traffic light, specifically a green light.

1 # traffic_light.kbs
2 # Show a traffic light and say a message.
3
4 clg
5
6 color black
7 rect 100,50,100,200
8
9 color darkred
10 circle 150,100,20
11
12 color darkyellow
13 circle 150,150,20
14
15 color green
16 circle 150,200,20
17
18 say "Green light. You may go."

Program 9: Traffic Light

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 16

Let's go line by line through the program above. The first and second lines
are called remark or comment statements. A remark is a place for the
programmer to place comments in their computer code that are ignored by
the BASIC-256. They are a good place to describe what complex blocks of
code is doing, the program's name, why we wrote a program, or who the
programmer was.

#
rem

The # and rem statements are called remarks. A remark
statement allows the programmer to put comments about the
code they are working on into the program. The computer sees
the # or rem statement and will ignore all of the rest of the text
on the line.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 9: Traffic Light

Chapter 2: Drawing Basic Shapes. Page 17

On line four you see the clg statement. It is much like the cls statement
from Chapter 1, except that the clg statement will clear the graphic output
area of the screen.

clg
clg color_name
clg rgb(red, green, blue)

The clg statement erases the graphics output area so that we
have a clean place to do our drawings.

You may optionally define a color after the clg statement and it
will set the entire graphics output window to that color.

Lines six, nine, twelve, and fifteen contain the simple form of the color
statement. It tells BASIC-256 what color to use for the next drawing action.
You may define colors either by using one of the eighteen standard color
names or you may create one of over 16 million different colors by mixing the
primary colors of light (red, green, and blue) together.

When you are using the numeric method to define your custom color be sure
to limit the values from 0 to 255. Zero (0) represents no light of that
component color and 255 means to shine the maximum. Bright white is
represented by 255, 255, 255 (all colors of light) where black is represented
by 0, 0, 0 (no colors at all). This numeric representation is known as the RGB
triplet. Illustration 3 shows the named colors and their RGB values.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 18

color color_name
color rgb(red, green, blue)

color can also be spelled colour.

The color statement allows you to set the color that will be drawn
next. You may follow the color statement with a color name
(black, white, red, darkred, green, darkgreen, blue, darkblue,
cyan, darkcyan, purple, darkpurple, yellow, darkyellow, orange,
darkorange, grey/gray, darkgrey/darkgray). You may also specify
over 16 million different colors using the RGB() function by
specifying how much red, blue, and green should be used.

Color Name and RGB Values Color Name and RGB Values

black (0,0,0) white (255,255,255)

red (255,0,0) darkred (128,0,0)

Green (0,255,0) darkgreen (0,128,0)

blue (0,0,255) darkblue (0,0,128)

cyan (0,255,255) darkcyan (0,128,128)

purple (255,0,255) darkpurple (128,0,128)

yellow (255,255,0) darkyellow (128,128,0)

orange (255,102,0) darkorange (170,51,0)

grey/gray (164,164,164) darkgrey/darkgray (128,128,128)

Illustration 3: Color Names

The graphics display area, by default is 300 pixels wide (x) by 300 pixels high
(y). A pixel is the smallest dot that can be displayed on your computer
monitor. The top left corner is the origin (0,0) and the bottom right is
(299,299). Each pixel can be represented by two numbers, the first (x) is how

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 19

far over it is and the second (y) represents how far down. This way of
marking points is known as the Cartesian Coordinate System to
mathematicians.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 4: The Cartesian Coordinate System of the Graphics Output Area

Chapter 2: Drawing Basic Shapes. Page 20

You can display grid lines on the Graphics Output Area of the
screen by checking the “Graphics Window Grid Lines” option on
the View menu.

Illustration 5: Grid Lines
Menu Option

Illustration 6: Graphics
Output Grid Lines

The next statement we will discuss (line 7) is rect. It is used to draw
rectangles on the screen. It takes four numbers separated by commas; (1)
how far over the left side of the rectangle is from the left edge of the
graphics area, (2) how far down the top edge is, (3) how wide and (4) how
tall. All four numbers are expressed in pixels (the size of the smallest dot that
can be displayed).

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 7: Rectangle

Chapter 2: Drawing Basic Shapes. Page 21

You can see that the rectangle in the program starts at the point (100,50), is
100 pixels wide and 200 pixels tall.

rect x, y, width, height

The rect statement uses the current drawing color and places a
rectangle on the graphics output window. The top left corner of
the rectangle is specified by the first two numbers and the width
and height is specified by the other two arguments.

Lines 10, 13 and 16 of Program 9 introduce the circle statement to draw a
circle. It takes three numeric arguments, the first two represent the Cartesian
coordinates for the center of the circle and the third the radius in pixels.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 8: Circle

Chapter 2: Drawing Basic Shapes. Page 22

circle x, y, radius

The circle statement uses the current drawing color and draws a
filled circle with its center at (x, y) with the specified radius.

Some Other Programs Using Circles and Rectangles

Here are a couple of sample programs that use the new statements clg,
color, rect and circle. Type the programs in and modify them. Make them a
frowning face, alien face, or look like somebody you know.

1 # rectanglesmile.kbs
2
3 # make the screen yellow
4 clg yellow
5
6 # draw the mouth
7 color black
8 rect 100,200,100,25
9
10 # put on the eyes
11 color black
12 rect 75,75,50,50
13 rect 175,75,50,50
14
15 say "Hello."

Program 10: Face with Rectangles

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 23

1 # circlesmile.kbs
2
3 # clear the screen
4 clg white
5
6 # draw the face
7 color yellow
8 circle 150,150,150
9
10 # draw the mouth by drawing a big black circle
11 # and then covering up the to part to leave
12 # a smile
13 color black
14 circle 150,200,70
15 color yellow
16 circle 150,150,70
17

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 10: Face with Rectangles

Chapter 2: Drawing Basic Shapes. Page 24

18 # draw the eyes
19 color black
20 circle 100,100,30
21 circle 200,100,30

Program 11: Smiling Face with Circles

Saving Your Program and Loading it Back:

Now that the programs are getting more complex, you may want to save
them so that you can load them back in the future.

You may store a program by using the Save button on the tool bar or
Save option on the File menu. A dialog will display asking you for a file name,
if it is a new program, or will save the changes you have made (replacing the
old file).

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 11: Smiling Face with Circles

Chapter 2: Drawing Basic Shapes. Page 25

If you do not want to replace the old version of the program and you want to
store it using a new name you may use the Save As option on the File menu
to save a copy with a different name.

To load a previously saved program you would use the Open button on
the tool bar or the Open option on the File menu.

Drawing with Lines:

The next drawing statement is line. It will draw a line one pixel wide, of the
current color, from one point to another point. Program 12 shows an example
of how to use the line statement.

1 # triangle.kbs - draw a triangle
2
3 clg
4
5 color black
6 line 150, 100, 100, 200
7 line 100, 200, 200, 200
8 line 200, 200, 150, 100

Program 12: Draw a Triangle

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 26

line start_x, start_y, finish_x, finish_y

Draw a line one pixel wide from the starting point to the ending
point, using the current color.

The next program is a sample of what you can do with many lines. It draws a
cube on the screen.

1 # cube.kbs - draw a cube
2
3 clg
4 color black

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 12: Draw a Triangle

Chapter 2: Drawing Basic Shapes. Page 27

5
6 # draw back square
7 line 150, 150, 150, 250
8 line 150, 250, 250, 250
9 line 250, 250, 250, 150
10 line 250, 150, 150, 150
11
12 # draw front square
13 line 100, 100, 100, 200
14 line 100, 200, 200, 200
15 line 200, 200, 200, 100
16 line 200, 100, 100, 100
17
18 # connect the corners
19 line 100, 100, 150, 150
20 line 100, 200, 150, 250
21 line 200, 200, 250, 250

Program 13: Draw a Cube

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 13: Draw a Cube

Chapter 2: Drawing Basic Shapes. Page 28

Setting Line Width and Drawing Shape Borders:

By default the width of a line drawn in BASIC256 is one pixel (dot) wide. The
penwidth statement can be used to change the way lines (and borders
around shapes) are drawn.

The following program will illustrate the penwidth statement, a more
complex use of the color statement and an example of the special color
clear.

1 # shapeoutline.kbs
2 # draw shapes with an outline
3
4 clg
5
6 # darw a pink circle with blue background
7 penwidth 7
8 color blue, rgb(255,128,128)
9 circle 100,50,44
10
11 # draw a thick black line
12 color black
13 penwidth 5
14 line 50,50,250,250
15
16 # draw another thick red line
17 color red
18 penwidth 10
19 line 175,100,100,175
20
21 # draw a green square that is not filled
22 color green, clear
23 penwidth 10
24 rect 150,175,75,75

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 29

Program 14: Penwidth and Shape Outline

penwidth n

Changes the width of the drawing pen. The pen represents the
width of a line being drawn and also the width of the outline of a
shape.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 14: Penwidth and Shape Outline

Chapter 2: Drawing Basic Shapes. Page 30

color pen_color, fill_color

Earlier in this chapter we saw the color statement with a single
color. When only a single color is specified then both the pen and
the fill color are set to the same value. You may define the pen
and fill colors to be different colors by using the color statement
with two colors.

clear

The special color clear may be used in the color statement to tell
BASIC256 to only draw the border of a shape. Just set the fill
color to clear.

Setting Individual Points on the Screen:

The last graphics statement covered in this chapter is plot. The plot
statement sets a single pixel (dot) on the screen. For most of us these are so
small, they are hard to see. Later we will write programs that will draw
groups of pixels to make very detailed images.

1 # pointplot.kbs - use plot to draw points
2
3 clg
4
5 color red
6 penwidth 21
7 plot 120,120
8

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 31

9 color orange
10 penwidth 13
11 plot 137,137
12
13 color yellow
14 penwidth 8
15 plot 149,149
16
17 color green
18 penwidth 5
19 plot 155,155
20
21 color blue
22 penwidth 3
23 plot 159,159
24
25 color purple
26 penwidth 2
27 plot 163,163
28
29 color black
30 penwidth 1
31 plot 166,166

Program 15: Use Plot to Draw Points

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 32

plot x, y

Draws a point on the screen in the current pen color with the
current pen width.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 15: Use Plot to Draw Points

Chapter 2: Drawing Basic Shapes. Page 33

At the end of each chapter there will be one or more big programs
for you to look at, type in, and experiment with. These programs
will contain only topics that we have covered so far in the book.

This "Big Program" takes the idea of a face and makes it talk.
Before the program will say each word the lower half of the face is
redrawn with a different mouth shape. This creates a rough
animation and makes the face more fun.

1 # talkingface.kbs
2 color yellow
3 rect 0,0,300,300
4 color black
5 rect 75,75,50,50
6 rect 175,75,50,50
7
8 #erase old mouth
9 color yellow
10 rect 0,150,300,150
11 # draw new mouth
12 color black
13 rect 125,175,50,100
14 # say word
15 say "i"
16
17 color yellow
18 rect 0,150,300,150
19 color black
20 rect 100,200,100,50
21 say "am"
22
23 color yellow
24 rect 0,150,300,150
25 color black
26 rect 125,175,50,100
27 say "glad"
28

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 34

29 color yellow
30 rect 0,150,300,150
31 color black
32 rect 125,200,50,50
33 say "you"
34
35 color yellow
36 rect 0,150,300,150
37 color black
38 rect 100,200,100,50
39 say "are"
40
41 color yellow
42 rect 0,150,300,150
43 color black
44 rect 125,200,50,50
45 say "my"
46
47 # draw whole new face with round smile.
48 color yellow
49 rect 0,0,300,300
50 color black
51 circle 150,175,100
52 color yellow
53 circle 150,150,100
54 color black
55 rect 75,75,50,50
56 rect 175,75,50,50
57 say "friend"

Program 16: Big Program - Talking Face

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 35

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 16: Big Program - Talking Face

Chapter 2: Drawing Basic Shapes. Page 36

Exercises:

r e t a n i d r o o c
e e a r a e l c r u m
m e l c r i c e s s r
a c k v c e c c u y o
r y j l n t i i t p l
k a g t a h d h w l o
q n e n p a g i q o c
y r g a r i d p j t e
c l r e e t s a v e h
e g p h h u e n i l d
j r x p e n w i d t h

center, circle, clear, clg, color, coordinate, cyan, graphics, height,
line, penwidth, plot, radius, rectangle, remark, save, width

1. Type in the code for Program 11: Smiling Face with Circles (on
page 24) and modify it to display Mr. Yuck. You may need to use
the penwidth statement to make the lines you draw thicker.

2. Write a program to draw a square and then say "square". Clear
the graphics screen, draw a circle, and say "circle". Then clear the
graphics screen draw several lines (in any pattern you would like)
and say "lines".

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 2: Drawing Basic Shapes. Page 37

3. Use colors, lines, and circles to draw an archery target with an
arrow in the center. Once the arrow is drawn make the computer
say “Bullseye!”.

4. Write a program that draws each of the quarters of the moon
(new moon, first quarter, full moon, and third quarter) and speaks
the name for the quarter. Hint: Draw the moon as a circle and
then draw a rectangle over the part you do not want.

New Moon First Quarter Full Moon Third Quarter

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

