
Chapter 4: Sound and Music. Page 49

Chapter 4: Sound and Music.

Now that we have color, graphics, and an understanding of variables, let's
add sound and make some music. Basic concepts of the physics of sound and
musical notation will be introduced. You will be able to translate a tune into
frequencies and durations to have the computer synthesize a voice.

Sound Basics – Things you need to know about sound:

Sound is created by vibrating air striking your ear-drum. These vibrations are
known as sound waves. When the air is vibrating quickly you will hear a high
note and when the air is vibrating slowly you will hear a low note. The rate of
the vibration is called frequency.

Frequency is measured in a unit called hertz (Hz). It represents how many
cycles (ups and downs) a wave vibrates through in a second. A normal

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 9: Sound Waves

Chapter 4: Sound and Music. Page 50

person can hear very low sounds at 20 Hz and very high sounds at 20,000
Hz. BASIC-256 can produce tones in the range of 50Hz to 7000Hz.

Another property of a sound is its length. Computers are very fast and can
measure times accurately to a millisecond (ms). A millisecond (ms) is 1/1000
(one thousandths) of a second.

Let's make some sounds.

1 # sounds.kbs
2 sound 233, 1000
3 sound 466, 500
4 sound 233, 1000

Program 23: Play Three Individual Notes

You may have heard a clicking noise in your speakers between the notes
played in the last example. This is caused by the computer creating the
sound and needing to stop and think a millisecond or so. The sound
statement also can be written using a list of frequencies and durations to
smooth out the transition from one note to another.

In the program below, the first two values represent the frequency and
duration of the first note. Once that is played the next two values are used to
play the next note.

1 # soundslist.kbs
2 sound {233, 1000, 466, 500, 233, 1000}

Program 24: List of Sounds

This second sound program plays the same three tones for the same duration
but the computer creates and plays all the sounds at once, making them

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Sound and Music. Page 51

smoother.

sound frequency, duration
sound {frequency1, duration1, frequency2,

duration2 …}
sound numeric_array[]

The basic sound statement takes two arguments; (1) the
frequency of the sound in Hz (cycles per second) and (2) the
length of the tone in milliseconds (ms).

The second form of the sound statement uses a single list with
curly braces to define the frequency and duration. This form can
be confusing, be careful.

The third form of the sound statement uses an array containing
frequencies and durations. Arrays are covered in a later chapter.

How do we get BASIC-256 to play a tune? The first thing we need to do is to
convert the notes on a music staff to frequencies. Illustration 9 shows two
octaves of music notes, their names, and the approximate frequency the note
makes. In music you will also find a special mark called the rest. The rest
means not to play anything for a certain duration. If you are using a list of
sounds you can insert a rest by specifying a frequency of zero (0) and the
needed duration for the silence.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Sound and Music. Page 52

Take a little piece of music and then look up the frequency values for each of
the notes. Why don't we have the computer play "Charge!". The music is in
Illustration 11. You might notice that the high G in the music is not on the
musical notes; if a note is not on the chart you can double (to make higher)
or half (to make lower) the same note from one octave away.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 10: Musical Notes

Illustration 11: Charge!

Chapter 4: Sound and Music. Page 53

Now that we have the frequencies we need the duration for each of the
notes. Table 3 shows most of the common note and rest symbols, how long
they are when compared to each other, and a few typical durations.

Duration in milliseconds (ms) can be calculated if you know the speed if the
music in beats per minute (BPM) using Formula 1.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Formula 1: Calculating Note Duration
Note Duration=1000∗60/Beats PerMinute∗Relative Length

Chapter 4: Sound and Music. Page 54

Note Name Symbols for
Note - Rest

Length
in

Beats

At 100
BPM

At 120
BPM

At 140
BPM

Dotted Whole 6.000 3600 ms 3000 ms 2571 ms

Whole 4.000 2400 ms 2000 ms 1714 ms

Dotted Half 3.000 1800 ms 1500 ms 1285 ms

Half 2.000 1200 ms 1000 ms 857 ms

Dotted Quarter 1.500 900 ms 750 ms 642 ms

Quarter 1.000 600 ms 500 ms 428 ms

Dotted Eighth 0.750 450 ms 375 ms 321 ms

Eighth 0.500 300 ms 250 ms 214 ms

Dotted Sixteenth 0.375 225 ms 187 ms 160 ms

Sixteenth 0.250 150 ms 125 ms 107 ms

Table 3: Musical Notes and Typical Durations

Now with the formula and table to calculate note durations, we can write the
program to play "Charge!".

1 # charge.kbs - play charge
2 sound { 392, 375, 523, 375, 659, 375, 784, 250, 659,

250, 784, 250}
3 say "Charge!"

Program 25: Charge!

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Sound and Music. Page 55

Instead of manually calculating the note durations, let's use a few variables
to calculate and store the lengths for us. Using variables we could re-write
the "Charge!" program using them to store the results of formulas to
calculate note durations (Formula 1).

1 # charge2.kbs
2 # play charge - use variables
3 bpm = 120 # beats per minute
4 bms = 1000 * 60 / bpm # ms per beat
5 dottedeighth = bms * .75
6 eighth = bms * .5
7 sound { 392, dottedeighth, 523, dottedeighth, 659,

dottedeighth, 784, eighth, 659, eighth, 784, eighth }
8 say "Charge!"

Program 26: Charge! with Variables

For this chapter's big program let's take a piece of music by J.S.
Bach and write a program to play it.

The musical score is a part of J.S. Bach's Little Fuge in G.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Sound and Music. Page 56

1 # littlefuge.kbs
2 # Music by J.S.Bach - XVIII Fuge in G moll.
3
4 tempo = 100 # beats per minute
5 milimin = 1000 * 60 # miliseconds in a minute
6 q = milimin / tempo # quarter note is a beat
7 h = q * 2 # half note (2 quarters)
8 e = q / 2 # eight note (1/2 quarter)
9 s = q / 4 # sixteenth note (1/4 quarter)
10 de = e + s # dotted eight - eight + 16th
11 dq = q + e # doted quarter - quarter + eight
12
13 sound {392, q, 587, q, 466, dq, 440, e, 392, e, 466,

e, 440, e, 392, e, 370, e, 440, e, 294, q, 392, e,
294, e, 440, e, 294, e, 466, e, 440, s, 392, s, 440,
e, 294, e, 392, e, 294, s, 392, s, 440, e, 294, s,
440, s, 466, e, 440, s, 392, s, 440, s, 294, s}

Program 27: Big Program - Little Fuge in G

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 12: First Four Measures of J.S. Bach's Little Fuge in G

Chapter 4: Sound and Music. Page 57

Exercises:

d j r a h e r t z q y t x
n a v a r i a b l e l z s
o s h a l f n g k j u e x
c s s h o r t c u t c g j
e i e h t h g i e a h i n
s g t u r l s l r t b k x
i n a t y f i b n d e d t
l m r s a i x e n e x l u
l e b y c n e u q e r f i
i n i b q t o e v a t c o
m t v z x s j w h o l e b
m u s i c r e t r a u q a
i j s q s e y t e t o n t

braces, eighth, frequency, half, hertz, millisecond, music, note,
octave, quarter, shortcut, sixteenth, sound, vibrate, whole

1. Write a program using a single sound statement to play “Shave
and a Hair Cut”. Remember you must include the quarter rests in
the second measure in your sound with a frequency of zero and
the duration of a quarter note.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 4: Sound and Music. Page 58

2. Type the sound statement below and insert the variable
assignments before it to play “Row Row Row your Boat”. The
variables c, d, e, f, g, and cc should contain the frequency of the
notes of the tune. The variable n4 should contain the length in
milliseconds of a quarter note; n2 twice n4, and n8 one half of n4.

sound {c,n4+n8, c,n4+n8, c,n4, d,n8, e,n4+n8,
e,n4, d,n8, e,n4, f,n8, g,n2+n4, cc,n8, cc,n8,
cc,n8, g,n8, g,n8, g,n8, e,n8, e,n8, e,n8, c,n8,
c,n8, c,n8, g,n4, f,n8, d,n4, e,n8, c,n2+n4}

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

