
Chapter 5: Thinking Like a Programmer Page 59

Chapter 5: Thinking Like a Programmer

One of the hardest things to learn is how to think like a programmer. A
programmer is not created by simple books or classes but grows from within
an individual. To become a "good" programmer takes passion for technology,
self learning, basic intelligence, and a drive to create and explore.

You are like the great explorers Christopher Columbus, Neil Armstrong, and
Yuri Gagarin (the first human in space). You have an unlimited universe to
explore and to create within the computer. The only restrictions on where
you can go will be your creativity and willingness to learn.

A program to develop a game or interesting application can often exceed
several thousand lines of computer code. This can very quickly become
overwhelming, even to the most experienced programmer. Often we
programmers will approach a complex problem using a three step process,
like:

1. Think about the problem.
2. Break the problem up into pieces and write them down formally.
3. Convert the pieces into the computer language you are using.

Pseudocode:

Pseudocode is a fancy word for writing out, step by step, what your program
needs to be doing. The word pseudocode comes from the Greek prefix
"pseudo-" meaning fake and "code" for the actual computer programming
statements. It is not created for the computer to use directly but it is made to
help you understand the complexity of a problem and to break it down into
meaningful pieces.

There is no single best way to write pseudocode. Dozens of standards exist
and each one of them is very suited for a particular type of problem. In this

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Thinking Like a Programmer Page 60

introduction we will use simple English statements to understand our
problems.

How would you go about writing a simple program to draw a school bus (like
in Illustration 13)?

Let's break this problem into two steps:

• draw the wheels
• draw the body

Now let's break the initial steps into smaller pieces and write our pseudocode:

Set color to black.
Draw both wheels.
Set color to yellow.
Draw body of bus.
Draw the front of bus.

Table 4: School Bus - Pseudocode

Now that we have our program worked out, all we need to do is write it:

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 13: School Bus

Chapter 5: Thinking Like a Programmer Page 61

Set color to black. color black
Draw both wheels. circle 50,120,20

circle 200,120,20
Set color to yellow. color yellow
Draw body of bus. rect 50,0,200,100
Draw the front of bus. rect 0,50,50,50

Table 5: School Bus - Pseudocode with BASIC-256 Statements

The completed school bus program (Program 28) is listed below. Look at the
finished program and you will see comment statements used in the program
to help the programmer remember the steps that they used to initially solve
the problem.

1 # schoolbus.kbs
2 # draw a school bus
3
4 clg
5
6 # draw wheels
7 color black
8 circle 50,120,20
9 circle 200,120,20
10
11 # draw bus body
12 color yellow
13 rect 50,0,200,100
14 rect 0,50,50,50

Program 28: School Bus

In the school bus example we have just seen there were many ways to break
up the problem. You could have drawn the bus first and the wheels last, you

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Thinking Like a Programmer Page 62

could have drawn the front before the back,... We could list dozens of
different ways this simple problem could have been tackled.

One very important thing to remember, THERE IS NO WRONG WAY to
approach a problem. Some ways are better than others (fewer instructions,
easier to read, …), but the important thing is that you solved the problem.

Flowcharting:

Another technique that programmers use to understand a problem is called
flowcharting. Following the old adage of "a picture is worth a thousand
words", programmers will sometimes draw a diagram representing the logic
of a program. Flowcharting is one of the oldest and commonly used methods
of drawing what a program is supposed to do.

This brief introduction to flowcharts will only cover a small part of what can
be done with them, but with a few simple symbols and connectors you will be
able to model very complex processes. This technique will serve you well not
only in programming but in solving many problems thet you will come across.
Here are a few of the basic symbols:

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Thinking Like a Programmer Page 63

Symbol Name and Description

Flow – An arrow represents moving from one
symbol or step in the process to another. You
must follow the direction of the arrowhead.

Terminator
Terminator – This symbol tells us where to start
and finish the flowchart. Each flowchart should
have two of these: a start and a finish.

Process
Process – This symbol represents activities or
actions that the program will need to take. There
should be only one arrow leaving a process.

Input and
Output

Input and Output (I/O) – This symbol represents
data or items being read by the system or being
written out of the system. An example would be
saving or loading files.

Decision

Decision – The decision diamond asks a simple
yes/no or true/false question. There should be
two arrows that leave a decision. Depending on
the result of the question we will follow one path
out of the diamond.

Table 6: Essential Flowcharting Symbols

The best way to learn to flowchart is to look at some examples and to try
your own hand it it.

Flowcharting Example One:

You just rolled out of bed and your mom has given you two choices for
breakfast. You can have your favorite cold cereal or a scrambled egg. If you
do not choose one of those options you can go to school hungry.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Thinking Like a Programmer Page 64

Take a look at Illustration 14 (above) and follow all the arrows. Do you see
how that picture represents the scenario?

Flowcharting Example Two:

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 14: Breakfast - Flowchart

Start

Scrambled
eggs?

Eat.

Cereal?

Fix eggs.

Get bowl, milk,
and cereal.

Yes

No

No

Yes

Finish

Chapter 5: Thinking Like a Programmer Page 65

Another food example. You are thirsty and want a soda from the machine.
Take a look at Illustration 15 (below).

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 15: Soda Machine - Flowchart

Start

Do we have
enough change
for the machine?

Make selection.

Insert coin.

Yes

No

No

YesHave we
Inserted enough?

Sold out?
No Yes

Get can.

Get change if any.

Drink.

Finish

Chapter 5: Thinking Like a Programmer Page 66

Notice in the second flowchart that there are a couple of times that we may
need to repeat a process. You have not seen how to do that in BASIC-256,
but it will be covered in the next few chapters.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 5: Thinking Like a Programmer Page 67

Exercises:

z d s y m b o l t r p
e m e w t a f r m r t
y d k c l u a v o s e
p q o z i h p g r p r
x r i c c s r n r e m
z f o w o a i e i t i
a u o c m d x o u s n
q l h m e p u p n q a
f o i q m s t e d u t
b n m h r u s w s b o
g e p r o b l e m p r

decision, flowchart, input, output, problem, process, programming,
pseudocode, steps, symbol, terminator

1. In complete sentences can you write out the steps to make a
peanut butter and jelly sandwich. Assume that the peanut butter
jar, jelly jar, loaf of bread, place, and silverware are on the table
in front of you. Can another person, who has never seen a PBJ,
successfully make one using your directions?

2. In a flow chart (or in a similar diagram) diagram the process
you go through to open the front door of your hours or
apartment. Do you have your keys? Is the door locked? Is it
already open?

3. In pseudocode (short statements) can you write out directions
from your school or work to the nearest restaurant or gas station.
Don't cheat and look the directions up on-line. Will the same
directions get you back the same way or do the instructions need
to be changed?

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

