
Chapter 8: Looping and Counting - Do it Again and Again. Page 91

Chapter 8: Looping and Counting - Do it
Again and Again.

So far our program has started, gone step by step through our instructions,
and quit. While this is OK for simple programs, most programs will have tasks
that need to be repeated, things counted, or both. This chapter will show you
the three looping statements, how to speed up your graphics, and how to
slow the program down.

The For Loop:

The most common loop is the for loop. The for loop repeatedly executes a
block of statements a specified number of times, and keeps track of the
count. The count can begin at any number, end at any number, and can step
by any increment. Program 38 shows a simple for statement used to say the
numbers 1 to 10 (inclusively). Program 39 will count by 2 starting at zero and
ending at 10.

1 # for.kbs
2 for t = 1 to 10
3 print t
4 say t
5 next t

Program 38: For Statement

1
2
3
4
5
6
7

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 92

8
9
10

Sample Output 38: For Statement

1 # forstep2.kbs
2 for t = 0 to 10 step 2
3 print t
4 say t
5 next t

Program 39: For Statement – With Step

0
2
4
6
8
10

Sample Output 39: For Statement – With Step

for variable = expr1 to expr2 [step expr3]
 statement(s)
next variable

Execute a specified block of code a specified number of times. The
variable will begin with the value of expr1. The variable will be
incremented by expr3 (or one if step is not specified) the second
and subsequent time through the loop. Loop terminates if variable
exceeds expr2.

Using a loop we can easily draw very interesting graphics. Program 40 will

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 93

draw a Moiré Pattern. This really interesting graphic effect is caused by the
computer being unable to draw perfectly straight lines. What is actually
drawn are pixels in a stair step fashion to approximate a straight line. If you
look closely at the lines we have drawn you can see that they actually are
jagged.

1 # moire.kbs - draw a moire pattern
2
3 clg white
4 color black
5 for t = 1 to 300 step 3
6 line 0,0,300,t
7 line 0,0,t,300
8 next t

Program 40: Moiré Pattern

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 40: Moiré Pattern

Chapter 8: Looping and Counting - Do it Again and Again. Page 94

What kind of Moiré Patterns can you draw? Start in the center,
use different step values, overlay one on top of another, try
different colors, go crazy.

For statements can even be used to count backwards. To do this set the
step to a negative number.

1 # stepneg1.kbs
2
3 for t = 10 to 0 step -1
4 print t
5 pause 1.0
6 next t

Program 41: For Statement – Countdown

10
9
8
7
6
5
4
3
2
1
0

Sample Output 41: For Statement – Countdown

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 95

pause seconds

The pause statement tells BASIC-256 to stop executing the
current program for a specified number of seconds. The number
of seconds may be a decimal number if a fractional second pause
is required.

Do Something Until I Tell You To Stop:

The next type of loop is the do/until. The do/until repeats a block of code
one or more times. At the end of each iteration a logical condition is tested.
The loop repeats as long as the condition is false. Program 42 uses the
do/until loop to repeat until the user enters a number from 1 to 10.

1 # dountil.kbs
2
3 do
4 inputinteger "enter an integer from 1 to 10?",n
5 until n>=1 and n<=10
6 print "you entered " + n

Program 42: Get a Number from 1 to 10

enter an integer from 1 to 10?66
enter an integer from 1 to 10?-56
enter an integer from 1 to 10?3
you entered 3

Sample Output 42: Get a Number from 1 to 10

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 96

do
 statement(s)
until condition

Do the statements in the block over and over again while the
condition is false.

The statements will be executed one or more times.

Do Something While I Tell You To Do It:

The third type of loop is the while/end while. It tests a condition before
executing each iteration and if it evaluates to true then executes the code in
the loop. The while/end while loop may execute the code inside the loop
zero or more times.

Sometimes we will want a program to loop forever, until the user stops the
program. This can easily be accomplished using the Boolean true constant
(see Program 43).

1 # whiletrue.kbs
2
3 while true
4 print "nevermore ";
5 end while

Program 43: Loop Forever

nevermore.
nevermore.
nevermore.
nevermore.
nevermore.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 97

… runs until you stop it

Sample Output 43: Loop Forever

while condition
 statement(s)
end while

Do the statements in the block over and over again while the
condition is true.

The statements will be executed zero or more times.

Program 44 uses a while loop to count from 1 to 10 like Program 38 did with
a for statement.

1 # whilefor.kbs
2
3 t = 1
4 while t <= 10
5 print t
6 t = t + 1
7 end while

Program 44: While Count to 10

1
2
3
4
5
6
7

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 98

8
9
10

Sample Output 44: While Count to 10

Continuing and Exiting Loops

Sometimes it becomes necessary for a programmer to jump out of a loop
before it would normally terminate (exit) or to start the next loop (continue)
without executing all of the code.

1 # exitwhile.kbs - adding machine
2
3 total = 0
4 while true
5 inputfloat "Enter Value (-999 to exit) > ", v
6 if v = -999 then exit while
7 total = total + v
8 end while
9
10 print "Your total was " + total

Program 45: Adding Machine - Using Exit While

Enter Value (-999 to exit) > 34
Enter Value (-999 to exit) > -34
Enter Value (-999 to exit) > 234
Enter Value (-999 to exit) > 44
Enter Value (-999 to exit) > -999
Your total was 278.0

Sample Output 45: Adding Machine - Using Exit While

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 99

exit do
exit for
exit while

Jump out of the current loop and skip the remaining code in the
loop.

continue do
continue for
continue while

Do not execute the rest of the code in this loop but loop again like
normal.

Fast Graphics:

When we need to execute many graphics quickly, like with animations or
games, BASIC-256 offers us a fast graphics system. To turn on this mode you
execute the fastgraphics statement. Once fastgraphics mode is started
the graphics output will only be updated once you execute the refresh
statement.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 100

fastgraphics
refresh

Start the fastgraphics mode. In fast graphics the screen will only
be updated when the refresh statement is executed.

Once a program executes the fastgraphics statement it can not
return to the standard graphics (slow) mode.

1 # kaleidoscope.kbs
2
3 clg
4 fastgraphics
5 while true
6 for t = 1 to 100
7 r = int(rand * 256)
8 g = int(rand * 256)
9 b = int(rand * 256)
10 x = int(rand * 300)
11 y = int(rand * 300)
12 h = int(rand * 100)
13 w = int(rand * 100)
14 color rgb(r,g,b)
15 rect x,y,w,h
16 rect 300-x-w,y,w,h
17 rect x,300-y-h,w,h
18 rect 300-x-w,300-y-h,w,h
19 next t
20 refresh
21 pause 1
22 end while

Program 46: Kaleidoscope

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 101

In this chapter's "Big Program" let's use a while loop to animate a
ball bouncing around on the graphics display area.

1 # bouncingball.kbs
2
3 fastgraphics
4
5 # starting position of ball
6 x = rand * 300
7 y = rand * 300
8 # size of ball

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 46: Kaleidoscope

Chapter 8: Looping and Counting - Do it Again and Again. Page 102

9 r = 10
10 # speed in x and y directions
11 dx = rand * r - r / 2
12 dy = rand * r - r / 2
13
14 clg green
15
16 while true
17 # erase old ball
18 color white
19 circle x,y,r
20 # calculate new position
21 x = x + dx
22 y = y + dy
23 # if off the edges turn the ball around
24 if x < 0 or x > 300 then
25 dx = dx * -1
26 sound 1000,50
27 end if
28 # if off the top or bottom turn the ball around
29 if y < 0 or y > 300 then
30 dy = dy * -1
31 sound 1500,50
32 end if
33 # draw new ball
34 color red
35 circle x,y,r
36 # update the display
37 refresh
38 # slow the ball down
39 pause .05
40 end while

Program 47: Big Program - Bouncing Ball

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 103

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 47: Big Program - Bouncing Ball

Chapter 8: Looping and Counting - Do it Again and Again. Page 104

Exercises:

f l g b w p e t s w i i
f a w t b q l i t n u i
t n s n v h p h b c f e
i a k t c v r o o e l l
x d r k g e w n o i l c
e x o u f r d e h l o i
i g f r y i a w l n l c
t x e n t g d p t i w k
g s d i o n e i h p h a
h w o a e d n z m i g w
x n s d z u u d w t c d
x o m i e h d g m o v s

condition, continue, do, endwhile, exit, fastgraphics, for, loop,
next, refresh, step, until, while

1. Write a program that uses the for loop to sum the integers
from 1 to 42 and display the answer. Hint: before the loop assign
a variable to zero to accumulate the total.

2. Write a program that asks the user for an integer from 2 to 12
in a loop. Keep looping until the user enters a number in the
range. Calculate the factorial (n!) of the number using a for loop
and display it. Remember 2! is 1*2, 3! is 1*2*3, and n! Is n * (n-
1)!.

3. Write a program to display one through 8 multiplied by 1
through 8. Hint: use a for loop inside another for loop. Format
your output to look like:

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 8: Looping and Counting - Do it Again and Again. Page 105

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5
1 * 6 = 6
1 * 7 = 7
1 * 8 = 8
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
…

4. Re-write #3 to make your output in table format, like:

 1 2 3 4 5 6 7 8
 2 4 6 8 10 12 14 16
 3 6 9 12 15 18 21 24
 4 8 12 16 20 24 28 32
 5 10 15 20 25 30 35 40
 6 12 18 24 30 36 42 48
 7 14 21 28 35 42 49 56
 8 16 24 32 40 48 56 64

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

