
Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 106

Chapter 9: Custom Graphics – Creating Your
Own Shapes.

This chapter we will show you how to draw colorful words and special shapes
on your graphics window. Several topics will be covered, including: fancy
text; drawing polygons on the graphics output area; and stamps, where we
can position, re-size, and rotate polygons. You also will be introduced to
angles and how to measure them in radians.

Fancy Text for Graphics Output:

You have been introduced to the print statement (Chapter 1) and can output
strings and numbers to the text output area. The text and font statements
allow you to place numbers and text on the graphics output area in a variety
of styles.

1 # graphichello.kbs
2 # drawing text
3
4 clg
5 color red
6 font "Tahoma",33,100
7 text 100,100,"Hello."
8 font "Impact",33,50
9 text 100,150,"Hello."
10 font "Courier New",33,50
11 text 100,250,"Hello."

Program 48: Hello on the Graphics Output Area

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 107

text x, y, expression

Draw the contents of the expression on the graphics output area
with it's top left corner specified by x and y. Use the font, size,
and weight specified in the last font statement.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 48: Hello on the Graphics Output Area

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 108

font font_name, size_in_point, weight

Set the font, size, and weight for the next text statement to use to
render text on the graphics output area.

Argument Description

font_name String containing the system font name to use. A
font must be previously loaded in the system
before it may be used. Common font names are
displayed below.

size_in_point Height of text to be rendered in a measurement
known as point. There are 72 points in an inch.

weight Number from 1 to 100 representing how dark
letter should be. Use 25 for light, 50 for normal,
and 75 for bold.

Illustration 17: Common Windows Fonts

Resizing the Graphics Output Area:

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 109

By default the graphics output area is 300x300 pixels. While this is sufficient
for many programs, it may be too large or too small for others. The
graphsize statement will re-size the graphics output area to what ever
custom size you require. Your program may also use the graphwidth and
graphheight functions to see what the current graphics size is set to.

1 # resizegraphics.kbs
2 # resize the graphics output area
3
4 graphsize 500,500
5 xcenter = graphwidth/2
6 ycenter = graphheight/2
7
8 color black
9 line xcenter, ycenter - 10, xcenter, ycenter + 10
10 line xcenter - 10, ycenter, xcenter + 10, ycenter
11
12 font "Tahoma",12,50
13 text xcenter + 10, ycenter + 10, "Center at (" +

xcenter + "," + ycenter + ")"

Program 49: Re-size Graphics

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 49: Re-size Graphics

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 110

graphsize width, height

Set the graphics output area to the specified height and width.

graphwidth or graphwidth()
graphheight or graphheight()

Functions that return the current graphics height and width for
you to use in your program.

Creating a Custom Polygon:

In previous chapters we learned how to draw rectangles and circles. Often
we want to draw other shapes. The poly statement will allow us to draw a
custom polygon anywhere on the screen.

Let's draw a big red arrow in the middle of the graphics output area. First,
draw it on a piece of paper so we can visualize the coordinates of the vertices
of the arrow shape.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 111

Now start at the top of the arrow going clockwise and write down the x and y
values.

1 # bigredarrow.kbs
2 clg
3 color red
4 poly { 150, 100, 200, 150, 175, 150, 175, 200, 125,

200, 125, 150, 100, 150 }

Program 50: Big Red Arrow

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 18: Big Red Arrow

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 112

poly {x1, y1, x2, y2 ... }
poly numeric_array[]

Draw a polygon using the points for the corners. The array is
evaluated by taking two values at a time and using them for the x
and y values to plot a vertex.

Stamping a Polygon:

The poly statement allowed us to place a polygon at a specific location on
the screen but it would be difficult to move it around or adjust it. These
problems are solved with the stamp statement. The stamp statement takes
a location on the screen, optional scaling (re-sizing), optional rotation, and a
polygon definition to allow us to place a polygon anywhere we want it in the

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 50: Big Red Arrow

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 113

screen.

Let's draw an equilateral triangle (all sides are the same length) on a piece of
paper. Put the point (0,0) at the top and make each leg 10 units long (see
Illustration 19).

Now we will create a program, using the simplest form of the stamp
statement, to fill the screen with triangles. Program 51 Will do just that. It
uses the triangle stamp inside two nested loops to fill the screen.

1 # stamptriangle.kbs - use a stamp to draw many
triangles

2
3 clg
4 color black

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 19: Equilateral Triangle

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 114

5 for x = 25 to 200 step 25
6 for y = 25 to 200 step 25
7 stamp x, y, {0, 0, 5, 8.6, -5, 8.6}
8 next y
9 next x

Program 51: Fill Screen with Triangles

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 51: Fill Screen with Triangles

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 115

stamp x, y, {x1, y1, x2, y2 ...}}
stamp x, y, numeric_array[]
stamp x, y, scale, {x1, y1, x2, y2 ...}
stamp x, y, scale, numeric_array[]
stamp x, y, scale, rotate, {x1, y1, x2, y2 ...}
stamp x, y, scale, rotate, numeric_array[]

Draw a polygon with it's origin (0,0) at the screen position (x,y).
Optionally scale (re-size) it by the decimal scale where 1 is full
size. Also you may also rotate the stamp clockwise around it's
origin by specifying how far to rotate as an angle expressed in
radians (0 to 2p).

Radians 0 to 2p

Angles in BASIC-256 are expressed in a unit of measure known as
a radian. Radians range from 0 to 2p. A right angle is p/2 radians
and an about face is p radians. You can convert degrees to
radians with the formula r=d /180∗ .

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 116

Let's look at another example of the stamp program. Program 52 used the
same isosceles triangle as the last program but places 100 of them at random
locations, randomly scaled, and randomly rotated on the screen.

1 # stamptriangle2.kbs - stamp randomly sized and
rotated triangles

2
3 clg
4 color black
5 for t = 1 to 100
6 x = rand * graphwidth
7 y = rand * graphheight
8 s = rand * 7 # scale up to 7 times larger
9 r = rand * 2 * pi # rotate up to 2pi (360

degrees)
10 stamp x, y, s, r, {0, 0, 5, 8.6, -5, 8.6}
11 next t

Program 52: One Hundred Random Triangles

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 20: Degrees and Radians

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 117

pi

The constant pi can be used in expressions so that you do not
have to remember the value of p. P is approximately 3.1415.

Sixteen Million Different Colors

BASIC-256 will allow you to define up to 16,777,216 unique colors when you
draw. The RGB color model adds red (R), green (G), and blue (B) light
together to form new colors. If all of the three colors are set to zero the color

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 52: One Hundred Random Triangles

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 118

Black will be created, if All three colors are set to the maximum value of 255
then the color will be white.

1 # 512colors.kbs - show a few of the 16 million colors
2 graphsize 256, 256
3 clg
4
5 for r = 0 to 255 step 32
6 for g = 0 to 255 step 32
7 for b = 0 to 255 step 32
8 color rgb(r,g,b)
9 rect b/8+g, r, 4, 32
10 next b
11 next g
12 next r

Program 53: 512 colors of the 16 million

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 53: 512 colors of the 16 million

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 119

rgb(red, green, blue)
rgb(red, green, blue, alpha)

The rgb function returns a single number that represents a color
expressed by the three or four values. The red, blue, and
green values represent how much of those colors to include
(255-on to 0-off). The optional alpha value represents how
transparent the color is (255-solid to 0-totally transparent).

1 # stamptriangle3.kbs - stamp randomly colored, sized
and rotated triangles

2
3 clg
4 penwidth 3
5
6 for t = 1 to 100
7 x = rand * graphwidth
8 y = rand * graphheight
9 s = rand * 7 # scale up to 7 times larger
10 r = rand * 2 * pi # rotate up to 2pi (360

degrees)
11 rpen = rand * 256 # get the RGBparts of a

random pen color
12 gpen = rand * 256
13 bpen = rand * 256
14 rbrush = rand * 256 # random brush (fill) color
15 gbrush = rand * 256
16 bbrush = rand * 256
17 color rgb(rpen, gpen, bpen), rgb(rbrush, gbrush,

bbrush)
18 stamp x, y, s, r, {0, 0, 5, 8.6, -5, 8.6}
19 next t

Program 54: 100 Random Triangles with Random Colors

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 120

In addition to setting the exact color we want we can also define a color to
be transparent. The RGB function has a fourth optional argument to set the
alpha (transparency) property of a color. Zero is totally see through, and
invisible, while 255 is totally opaque.

1 # transparent.kbs - show the nature of transparent
colors

2 clg white
3
4 color rgb(255,0,0,127)
5 circle 100,100,100
6
7 color rgb(0,255,0,127)
8 circle 200,100,100
9
10 color rgb(0,0,255,127)
11 circle 100,200,100
12
13 color rgb(0,0,0,127)

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 54: 100 Random Triangles with Random Colors

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 121

14 circle 200,200,100

Program 55: Transparent Circles

1 # stamptriangle4.kbs - stamp randomly colored, sized
and rotated triangles

2
3 clg
4 penwidth 3
5
6 for t = 1 to 100
7 x = rand * graphwidth
8 y = rand * graphheight
9 s = rand * 7 # scale up to 7 times larger
10 r = rand * 2 * pi # rotate up to 2pi (360

degrees)
11 rpen = rand * 256 # get the RGBparts of a

random pen color
12 gpen = rand * 256
13 bpen = rand * 256

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 55: Transparent Circles

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 122

14 apen = rand * 256
15 rbrush = rand * 256 # random brush (fill) color
16 gbrush = rand * 256
17 bbrush = rand * 256
18 abrush = rand * 256
19 color rgb(rpen, gpen, bpen, apen), rgb(rbrush,

gbrush, bbrush, abrush)
20 stamp x, y, s, r, {0, 0, 5, 8.6, -5, 8.6}
21 next t

Program 56: 100 Random Triangles with Random Transparent Colors

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 56: 100 Random Triangles with Random Transparent Colors

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 123

Let's send flowers to somebody special. The following program
draws a flower using rotation and a stamp.

1 # aflowerforyou.kbs - use stamps to draw a flower
2
3 clg
4
5 color green
6 rect 148,150,4,150
7
8 color rgb(255,128,128)
9 for r = 0 to 2*pi step pi/4

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 21: Big Program - A Flower For You - Flower Petal Stamp

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 124

10 stamp graphwidth/2, graphheight/2, 2, r, {0, 0, 5,
20, 0, 25, -5, 20}

11 next r
12
13 color rgb(128,128,255)
14 for r = 0 to 2*pi step pi/5
15 stamp graphwidth/2, graphheight/2, 1, r, {0, 0, 5,

20, 0, 25, -5, 20}
16 next r
17
18 message = "A flower for you."
19
20 color darkyellow
21 font "Tahoma", 14, 50
22 text 10, 10, message
23 say message

Program 57: Big Program - A Flower For You

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 57: Big Program - A Flower For You

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 125

Exercises:

t n e r a p s n a r t j
k c r l s e u l b h e s
v g p r t r z a g c c g
b h d x a r x i t i f r
a s e m s d e f h g w a
p t e t f h i p p r i p
a o a e h o a a f e t h
e m i p r r n r n e h s
p w a n g g e t q n g i
l r u o t d e u u j i z
g r a p h w i d t h e e
s i p o l y g o n c w f

alpha, blue, degrees, font, graphheight, graphics, graphsize,
graphwidth, green, pi, point, polygon, radian, red, rgb, stamp,
text, transparent, weight

1. Use two poly and one rect statements to draw a simple house
similar to the one shown below. Your house can be any
combination of colors you wish it to be.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 126

Use the hexagon below as a guide to help you to solve Problems 2
through 4. The sides of the hexagon are one unit long and the
origin (0,0) is in the center of the shape.

2. Use a color statement with a clear brush and a single poly
statement to draw a hexagon in the center of the graphics screen
with each side 100 pixels long.

3. Rewrite #2 to use a stamp statement. Use the scale feature of
stamp so that you may draw a hexagon of any size by only
changing one number.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 9: Custom Graphics – Creating Your Own Shapes. Page 127

4. Put the stamp statement from #3 inside a for loop and draw a
series of nested hexagons by changing the scale. You may want to
experiment with the step clause and with rotating the hexagon at
the same time.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

