
Chapter 10: Functions and Subroutines – Reusing Code. Page 128

Chapter 10: Functions and Subroutines –
Reusing Code.

This chapter introduces the use of Functions and Subroutines. Programmers
create subroutines and functions to test small parts of a program, reuse
these parts where they are needed, extend the programming language, and
simplify programs.

Functions:

A function is a small program within your larger program that does something
for you. You may send zero or more values to a function and the function will
return one value. You are already familiar with several built in functions like:
rand and rgb. Now we will create our own.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 22: Block Diagram of a Function

Chapter 10: Functions and Subroutines – Reusing Code. Page 129

Function functionname(argument(s))
 statements
End Function

The Function statement creates a new block of programming
statements and assigns a name to that code. It is recommended
that you do not name your function the same name as a variable
in your program, as it may cause confusion later.

In the required parenthesis you may also define a list of variables
that will receive values from the “calling” part of the program.
These variables belong to the function and are not available to the
part of the program that calls the function.

A function definition must be closed or finished with an End
Function. This tells the computer that we are done defining the
function.

The value being returned by the function may be set in one of two
ways: 1) by using the return statement with a value following it
or 2) by setting the function name to a value within the function.

Return value

Execute the return statement within a function to return a value
and send control back to where it was called from.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 130

end

Terminates the program (stop).

1 # minimum.kbs
2 # minimum function
3
4 inputfloat "enter a number ", a
5 inputfloat "enter a second number ", b
6
7 print "the smaller one is ";
8 print minimum(a,b)
9 end
10
11 function minimum(x,y)
12 # return the smallest of the two numbers passed
13 if x<y then return x
14 return y
15 end function

Program 58: Minimum Function

enter a number 7
enter a second number 3
the smaller one is 3.0

Sample Output 58: Minimum Function

1 # gameroller.kbs
2 # Game Dice Roller

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 131

3
4 print "die roller"
5 s = get("sides on the die",6)
6 n = get("number of die", 2)
7 total = 0
8 for x = 1 to n
9 d = die(s)
10 print d
11 total = total + d
12 next x
13 print "total "+ total
14 end
15
16 function get(message, default)
17 # get an integer number
18 # if they press enter or type in a non integer

then default to another value
19 input message + " (default " + default + ") ?" ,

n
20 if typeof(n) <> 1 then n = default
21 return n
22 end function
23
24 function die(sides)
25 # roll a die and return 1 to sides
26 return int(rand*sides)+1
27 end function

Program 59: Game Dice Roller

die roller
sides on the die (default 6) ?6
number of die (default 2) ?3
6
3
1
total 10

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 132

Sample Output 59: Game Dice Roller

In the examples above we have created functions that returned a numeric
value. Functions may also be created that return a string value. A string
function, like a variable, has a dollar sign after its name to specify that is
returns a string.

1 # repeatstring.kbs
2 # simple string function – make copies
3
4 a = "hi"
5 b = repeat(a,20)
6 print a
7 print b
8 end
9
10 function repeat(word,numberoftimes)
11 result = ""
12 for t = 1 to numberoftimes
13 result ;= word
14 next t
15 return result
16 end function

Program 60: Repeating String Function

hi
hi

Sample Output 60: Repeating String Function

Observe in the function samples, above, that variables within a function exist
only within the function. If the same variable name is used in the function it
DOES NOT change the value outside the function.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 133

Subroutines:

A subroutine is a small subprogram within your larger program that does
something specific. Subroutines allow for a single block of code to be used by
different parts of a larger program. A subroutine may have values sent to it
to tell the subroutine how to react.

Subroutines are like functions except that they do not return a value and that
they require the use of the call statement to execute them.

Subroutine subroutinename(argument(s))
 statements
End Subroutine

The Subroutine statement creates a new block of programming
statements and assigns a name to that block of code. It is
recommended that you do not name your subroutine the same
name as a variable in your program, as it may cause confusion
later.

In the required parenthesis you may also define a list of variables
that will receive values from the “calling” part of the program.
These variables are local to the subroutine and are not directly
available to the calling program.

A subroutine definition must be closed or finished with an End
Subroutine. This tells the computer that we are done defining
the subroutine.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 134

Call subroutinename(value(s))

The Call statement tells BASIC-256 to transfer program control to
the subroutine and pass the values to the subroutine for
processing.

Return

Execute the return statement within a subroutine to send control
back to where it was called from.

This version of the return statement does not include a value to
return, as a subroutine does not return a value.

1 # subroutineclock.kbs
2 # display a comple ticking clock
3
4 fastgraphics
5 font "Tahoma", 20, 100
6 color blue
7 rect 0, 0, 300, 300
8 color yellow
9 text 0, 0, "My Clock."
10
11 while true
12 call displaytime()
13 pause 1.0
14 end while
15
16 end

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 135

17
18 subroutine displaytime()
19 color blue
20 rect 100, 100, 200, 100
21 color yellow
22 text 100, 100, padtwo(hour) + ":" +

padtwo(minute) + ":" + padtwo(second)
23 refresh
24 end subroutine
25
26 function padtwo(x)
27 # if x is a single digit then prepend a zero
28 if x < 10 then x = "0"+x
29 return x
30 end function

Program 61: Subroutine Clock

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 61: Subroutine Clock

Chapter 10: Functions and Subroutines – Reusing Code. Page 136

hour or hour()
minute or minute()
second or second()
month or month()
day or day()
year or year()

The functions year, month, day, hour, minute, and second
return the components of the system clock. They allow your
program to tell what time it is.

year Returns the system 4 digit year.

month Returns month number 0 to 11. 0 – January, 1-
February...

day Returns the day of the month 1 to 28,29,30, or 31.

hour Returns the hour 0 to 23 in 24 hour format. 0 – 12
AM, 1- 1 AM, … 12 – 12 PM, 13 – 1 PM, 23 – 11
PM ...

minute Returns the minute 0 to 59 in the current hour.

second Returns the second 0 to 59 in the current minute.

1 ## subroutineclockimproved.kbs
2 # better ticking clock
3
4 fastgraphics
5 font "Tahoma", 20, 100
6 clg blue
7
8 call displaydate()
9 while true
10 call displaytime()
11 pause 1.0

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 137

12 end while
13
14 end
15
16 subroutine displaydate()
17 # draw over old date
18 color blue
19 rect 50,50, 200, 100
20 # draw new date
21 color yellow
22 text 50,50, padnumber(month) + "/" +

padnumber(day) + "/" + padnumber(year)
23 refresh
24 end subroutine
25
26 subroutine displaytime()
27 # draw over old time
28 color blue
29 rect 50,100, 200, 100
30 #draw new time
31 color yellow
32 text 50, 100, padnumber(hour) + ":" +

padnumber(minute) + ":" + padnumber(second)
33 refresh
34 end subroutine
35
36 function padnumber(n)
37 if n < 10 then n = "0" + n
38 return n
39 end function

Program 62: Subroutine Clock - Improved

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 138

Using the Same Code in Multiple Programs:

Once a programmer creates a subroutine or function they may want to re-use
these blocks of code in other programs. You may copy and paste the code
from one program to another but what if you want to make small changes
and want the change made to all of your programs. This is where the
include statement comes in handy.

The include statement tells BASIC-256 at compile time (when you first press
the run button) to bring in code from other files. In Program 63 (below) you
can see that the functions have been saved out as their own files and
included back into the main program.

1 # gamerollerinclude.kbs
2 # Game Dice Roller
3
4 include "diefunction.kbs"
5 include "getintegerfunction.kbs"
6
7 print "die roller with included functions"
8 s = getinteger("sides on the die",6)
9 n = getinteger("number of die",2)
10 total = 0
11
12 for x = 1 to n
13 d = die(s)

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output: 62: Subroutine Clock - Improved

Chapter 10: Functions and Subroutines – Reusing Code. Page 139

14 print d
15 total = total + d
16 next x
17 print "total "+ total
18 end

Program 63: Game Dice Roller – With Included Functions

1 # diefunction.kbs
2 # function to roll a N sided die
3
4 function die(sides)
5 return int(rand*sides)+1
6 end function

Program 64: Game Dice Roller – die Function

1 # getintegerfunction.kbs
2 # get an integer number
3 # if they press enter or type in a non integer then

default to another value
4
5 function getinteger(message, default)
6 input message + " (default " + default + ") ?" ,

n
7 if typeof(n) <> TYPE_INT then n = default
8 return n
9 end function

Program 65: Game Dice Roller – getinteger Function

Now that we have split out the functions we can use them in different
programs, without having to change the function code or re-typing it.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 140

1 # addingmachine.kbs
2 # create a nice adding machine
3
4 include "getintegerfunction.kbs"
5
6 print "adding machine"
7 print "press stop to end"
8
9 total = 0
10 while true
11 a = getinteger("+ ",0)
12 total = total + a
13 print total
14 end while

Program 66: Adding Machine – Using the inputintegerdefault Function

adding machine
press stop to end
+ (default 0) ?6
6
+ (default 0) ?
6
+ (default 0) ?55
61
+ (default 0) ?

Sample Output 66: Adding Machine – Using the inputintegerdefault Function

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 141

include “string constant”

Include code from an external file at compile (when run is
clicked).

The file name must be in quotes and can not be a variable or
other expression.

Labels, Goto, and Gosub:

This section contains a discussion of labels and how to cause your program to
jump to them. These methods are how we used to do it before subroutines
and functions were added to the language. These statements can be
used to create ugly and overly complex programs and should be
avoided.

In Program 43 Loop Forever we saw an example of looping forever. This can
also be done using a label and a goto statement.

1 # goto.kbs
2 top:
3 print "hi"
4 goto top

Program 67: Goto With a Label

hi
hi
hi
hi
... repeats forever

Sample Output 67: Goto With a Label

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 142

label:

A label allows you to name a place in your program so you may
jump to that location later in the program. You may have multiple
labels in a single program, but each label can only exist in one
place.

A label name is followed with a colon (:); must be at the
beginning of a line. The line may contain statements or not that
follow the label. Labels must begin with a letter; may contain
letters and numbers; and are case-sensitive. Also, you can not use
words reserved by the BASIC-256 language when naming labels
(see Appendix I), or the names of variables, subroutines and
functions.

Examples of valid labels include: top:, far999:, and About:.

goto label

The goto statement causes the execution to jump to the
statement directly following the label.

Subroutines and functions allow us to reuse blocks of code. The gosub
statement also allows a programmer to reuse code. The major difference
between the two, is that variables in a gosub block are global to the entire
program.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 143

Program 68 shows an example of a subroutine that is called three times.

1 # gosub.kbs
2 # a simple gosub
3
4 a = 10
5 for t = 1 to 3
6 print "a equals " + a
7 gosub showline
8 next t
9 end
10
11 showline:
12 print "------------------"
13 a = a * 2
14 return

Program 68: Gosub

a equals 10

a equals 20

a equals 40

Sample Output 68: Gosub

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 144

gosub label

The gosub statement causes the execution to jump to the
subroutine defined by the label.

In our "Big Program" this chapter, let's make a program to roll two
dice, draw them on the screen, and give the total. Let's use an
included function to generate the random number of spots and a
subroutine to draw the image so that we only have to write it
once.

1 # rollgraphicaldice.kbs
2 # roll two dice graphically
3
4 include "diefunction.kbs"
5
6 clg
7 total = 0
8
9 roll = die(6)
10 total = total + roll
11 call drawdie(30,30, roll)
12
13 roll = die(6)
14 total = total + roll
15 call drawdie(130,130, roll)
16
17 print "you rolled " + total + "."

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 145

18 end
19
20 subroutine drawdie(x,y,n)
21 # draw 70x70 with dots 10x10 pixels
22 # set x,y for top left and n for number of dots
23 color black
24 rect x,y,70,70
25 color white
26 # top row
27 if n <> 1 then rect x + 10, y + 10, 10, 10
28 if n = 6 then rect x + 30, y + 10, 10, 10
29 if n >= 4 and n <= 6 then rect x + 50, y + 10,

10, 10
30 # middle
31 if n = 1 or n = 3 or n = 5 then rect x + 30, y +

30, 10, 10
32 # bottom row
33 if n >= 4 and n <= 6 then rect x + 10, y + 50,

10, 10
34 if n <> 1 then rect x + 50, y + 50, 10, 10
35 if n = 6 then rect x + 30, y + 50, 10, 10
36 end subroutine

Program 69: Big Program - Roll Two Dice Graphically

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 146

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 69: Big Program - Roll Two Dice Graphically

Chapter 10: Functions and Subroutines – Reusing Code. Page 147

Exercises:

g o t o d e j j v e q y
k x a w r n x d s q a n
u i d r x i o p i d r o
l n h r g t z c s c e i
k c l e p u j d e p t t
g l e t a o m n h s a c
o u b u l r h e t v n n
s d a r l b f r n h i u
u e l n a u i a e t m f
b m z j c s l e r n r n
e t u n i m e y a o e b
h o u r s o w w p m t n

argument, call, day, end, file, function, gosub, goto, hour, include,
label, minute, month, parenthesis, return, second, subroutine,
terminate, year

1. Create a subroutine that will accept two numbers representing
a point on the screen. Have the routine draw a smiling face with a
radius of 20 pixels at that point. You may use circles, rectangles,
or polygons as needed. Call that subroutine in a loop 100 times
and draw the smiling faces at random locations to fill the screen.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 148

2. Write a program that asks for two points x1, y1 and x2, y2 and
displays the formula for the line connecting those two points in
slope-intercept format (y=mx+b). Create a function that
returns the slope (m) of the connecting line using the formula
y1− y2
x1−x2 . Create a second function that returns the y intercept

(b) when the x and y coordinates of one of the points and the
slope are passed to the function.

x1? 1
y1? 1
x2? 3
y2? 2
y = 0.5x + 0.5

3. In mathematics the term factorial means the product of
consecutive numbers and is represented by the exclamation point.
The symbol n! means n * (n-1) * (n-2) * … * 3 * 2 * 1 where n is
an integer and 0! is 1 by definition.

Write a function that accepts one number and returns its factorial.
Call that new function within a for loop to display 1! to 10!. Your
output should look like:

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 10: Functions and Subroutines – Reusing Code. Page 149

1! is 1
2! is 2
3! is 6
4! is 24
5! is 120
6! is 720
7! is 5040
8! is 40320
9! is 362880
10! is 3628800

4. A recursive function is a special type of function that calls itself.
Knowing that n! = n * (n-1)! and that 0! = 1 rewrite #3 to use a
recursive function to calculate a factorial.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

