
Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 162

Chapter 12: Keyboard Control – Using the
Keyboard to Do Things.

This chapter will show you how to make your program respond to the user
when a key is pressed (arrows, letters, and special keys) on the keyboard.

Getting the Last Key Press:

The key function returns the last raw keyboard code generated by the system
when a key was pressed. Certain keys (like control-c and function-1) are
captured by the BASIC256 window and will not be returned by key. After the
last key press value has been returned the function value will be set to zero
(0) until another keyboard key has been pressed.

The key values for printable characters (0-9, symbols, letters) are the same
as their upper case Unicode values regardless of the status of the caps-lock
or shift keys.

1 # readkey.kbs
2 print "press a key - Q to quit"
3 do
4 k = key
5 if k <> 0 then
6 if k >=32 and k <= 127 then
7 print chr(k) + "=";
8 end if
9 print k
10 end if
11 until k = asc("Q")
12 end

Program 73: Read Keyboard

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 163

press a key - Q to quit
A=65
Z=90
M=77
16777248
&=38
7=55

Sample Output 73: Read Keyboard

key
key()

The key function returns the value of the last keyboard key the
user has pressed. Once the key value is read by the function, it is
set to zero to denote that no key has been pressed.

Partial List of Keys
ESC= 16777216 Space= 32

0=48 1=49 2=50 3=51 4=52 5=53

6=54 7=55 8=56 9=57

A=65 B=66 C=67 D=68 E=69 F=70

G=71 H=72 I=73 J=74 K=75 L=76

M=77 N=78 O=79 P=80 Q=81 R=82

S=83 T=84 U=85 V=86 W=87 X=88

Y=89 Z=90

Down Arrow= 16777237 Up Arrow= 16777235

Right Arrow= 16777236 Left Arrow= 16777234

See http://qt-project.org/doc/qt-4.8/qt.html#Key-enum for a
complete list of key values.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

http://qt-project.org/doc/qt-4.8/qt.html#Key-enum

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 164

Unicode

The Unicode standard was created to assign numeric values to
letters or characters for the world's writing systems. There are
more than 107,000 different characters defined in the Unicode 5.0
standard.

See: http://www.unicode.org

asc(expression)

The asc function returns an integer representing the Unicode
value of the first character of the string expression.

chr(expression)

The chr function returns a string, containing a single character
with the Unicode value of the integer expression.

Another example of a key press program would be a program to display a
letter and to time the user to see how long it took them to press the letter on
the keyboard. This program also introduces the msec statement that returns

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 165

the number of milliseconds (1/1000 of a second) that the program has been
running.

1 # keymsec.kbs
2
3 # get the code for a random character from A-Z
4 c = asc("A") + int(rand*26)
5
6 # display the letter (from the numeric code)
7 print "press '" + chr(c) + "'"
8
9 time = msec # get the start time
10 do # wait for the key
11 k = key
12 until k = c
13 time = msec - time # calculate how long (in ms)
14
15 print "it took you " + (time/1000) + " seconds to

find that letter."

Program 74: Keyboard Speed Drill

press 'C'
it took you 1.833 seconds to find that letter.

Sample Output 74: Keyboard Speed Drill

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 166

msec()
msec

The msec function returns the length of time that a program has
been running in milliseconds (1/1000 of a second).

How about we look at a more complex example? Program 75 Draws a red
ball on the screen and the user can move it around using the keyboard.

1 # keymoveball.kbs
2 # move a ball on the screen with the keyboard
3
4 print "use i for up, j for left, k for right, m for

down, q to quit"
5
6 fastgraphics
7 clg
8
9 # position of the ball
10 # start in the center of the screen
11 x = graphwidth /2
12 y = graphheight / 2
13 r = 20 # size of the ball (radius)
14
15 # draw the ball initially on the screen
16 call drawball(x, y, r)
17
18 # loop and wait for the user to press a key
19 while true
20 k = key
21 if k = asc("I") then
22 y = y - r

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 167

23 if y < r then y = graphheight - r
24 call drawball(x, y, r)
25 end if
26 if k = asc("J") then
27 x = x - r
28 if x < r then x = graphwidth - r
29 call drawball(x, y, r)
30 end if
31 if k = asc("K") then
32 x = x + r
33 if x > graphwidth - r then x = r
34 call drawball(x, y, r)
35 end if
36 if k = asc("M") then
37 y = y + r
38 if y > graphheight - r then y = r
39 call drawball(x, y, r)
40 end if
41 if k = asc("Q") then exit while
42 end while
43 print "all done."
44 end
45
46 subroutine drawball(ballx, bally, ballr)
47 clg white
48 color red
49 circle ballx, bally, ballr
50 color rgb(255,100,100)
51 circle ballx+.25*ballr, bally+.25*ballr,

ballr*.50
52 color rgb(255,150,150)
53 circle ballx+.25*ballr, bally+.25*ballr,

ballr*.30
54 color rgb(255,200,200)
55 circle ballx+.25*ballr, bally+.25*ballr,

ballr*.10
56 refresh
57 end subroutine

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 168

Program 75: Move Ball

Getting the Currently Pressed Keys

The key function in the first half of this chapter returns the last key pressed,
even if the user has released the key. We will now see the keypressed
function that will let us know what keys are being pressed, right now.

1 # keypressarrows.kbs
2
3 arrow = { {5, 0}, {10, 5}, {7, 5}, {7, 10}, {3, 10},

{3, 5}, {0, 5}}
4
5 ar_down = 16777237
6 ar_up = 16777235
7 ar_left = 16777234
8 ar_right = 16777236

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 75: Move Ball

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 169

9 space = 32
10
11 clg white
12 penwidth 5
13
14 print "press arrow keys on keyboard (even more than

one) or space to end"
15 while not keypressed(space)
16 if keypressed(ar_up) then
17 color red
18 else
19 color darkred, white
20 endif
21 stamp 100,10,10,arrow
22
23 if keypressed(ar_down) then
24 color green
25 else
26 color darkgreen, white
27 endif
28 stamp 200,290,10,pi,arrow
29
30 if keypressed(ar_left) then
31 color blue
32 else
33 color darkblue, white
34 endif
35 stamp 10,200,10,1.5*pi,arrow
36
37 if keypressed(ar_right) then
38 color yellow
39 else
40 color darkyellow, white
41 endif
42 stamp 290,100,10,.5*pi,arrow
43
44 end while

Program 76: Keys Pressed

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 170

keypressed(key_value)

The keypressed function returns true if the key number is
currently being pressed. This statement may be used to see if
multiple keys are being pressed at the same time.

See the key function above for a list of common keycodes.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 76: Keys Pressed

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 171

The big program this chapter is a game using the keyboard.
Random letters are going to fall down the screen and you score
points by pressing the key as fast as you can.

1 # fallinglettergame.kbs
2
3 speed = .15 # drop speed - lower to make faster
4 nletters = 10 # letters to play
5
6 score = 0
7 misses = 0
8 color black
9
10 fastgraphics
11
12 clg
13 font "Tahoma", 20, 50
14 text 20, 80, "Falling Letter Game"
15 font "Tahoma", 16, 50
16 text 20, 140, "Press Any Key to Start"
17 refresh
18 # clear keyboard and wait for any key to be pressed
19 k = key
20 while key = 0
21 pause speed
22 end while
23
24 misses = nletters # assume they missed everything
25 for n = 1 to nletters
26 letter = int((rand * 26)) + asc("A")
27 x = 10 + rand * 225
28 for y = 0 to 250 step 20

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 172

29 clg
30 # show letter
31 font "Tahoma", 20, 50
32 text x, y, chr(letter)
33 # show score and points
34 font "Tahoma", 12, 50
35 value = (250 - y)
36 text 10, 270, "Value "+ value
37 text 200, 270, "Score "+ score
38 refresh
39 k = key
40 if k <> 0 then
41 if k = letter then
42 score = score + value
43 misses-- # didnt miss this one
44 else
45 score = score - value
46 end if
47 exit for
48 end if
49 pause speed
50 next y
51 next n
52
53 clg
54 font "Tahoma", 20, 50
55 text 20, 40, "Falling Letter Game"
56 text 20, 80, "Game Over"
57 text 20, 120, "Score: " + score
58 text 20, 160, "Misses: " + misses
59 refresh
60 end

Program 77: Big Program - Falling Letter Game

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 173

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 77: Big Program - Falling Letter Game

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 174

Exercises:

arrow, asc, capslock, chr, control, key, shift, unicode, keypressed,
escape

1. Take Program 74: Keyboard Speed Drill from this chapter and
modify it to display ten letters, one at a time, and wait for the
user to press that key. Once the user has pressed the correct
letters display the total time it took the user.

As an added challenge add logic to count the number of errors
and allow a user to retry a letter until they successfully type it.

press 'A'
press 'M'
press 'O'
error
press 'U'
press 'X'
press 'V'
press 'K'
press 'C'
press 'Z'
press 'Z'
it took you 15.372 seconds to find
them.
you made 1 errors.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 175

2. Create a graphical game like “whack-a-mole” that displays a
number on the screen and will wait a random length of time (try
0.5 to 1.5 seconds) for the user to press that number. If they do
play a happy sound and display the next, if they miss it or are not
fast enough play a sad sound. When they have missed 5 then
show them how many they were able to get.

3. Create a piano program using the keys of your keyboard. Wait
in a loop so that when the user presses a key the program will
play a sound for a short period of time. Assign keys on the
keyboard frequencies that correspond to notes on Illustration 10
found on page 52.

4. Use the keypressed function to animate a ball on the screen.
You may want to start with Program 75, above.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 12: Keyboard Control – Using the Keyboard to Do Things. Page 176

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

