
Chapter 13: Images, WAVs, and Sprites Page 177

Chapter 13: Images, WAVs, and Sprites

This chapter will introduce the really advanced multimedia and graphical
statements. Saving images to a file, loading them back, playing sounds from
WAV files, and really cool animation using sprites.

Saving Images to a File:

So far we have seen how to create shapes and graphics using the built in
drawing statements. The imgsave statement allows you to save your images
to one of many standard image formats.

Program 78 Draws a series of pentagons, each a little bigger and rotated to
make a beautiful geometric flower. It would be nice to use that image
somewhere else. This program creates a PNG (Portable Network Graphics)
file that can be used on a Website, presentation, or anywhere else you may
want to use it.

1 # 5pointed.kbs
2 #
3 graphsize 100,100
4 clg
5 color black,clear
6 for s = 1 to 50 step 2
7 stamp 50,50,s,s,{0,-1, .95,-.31, .59,.81,

-.59,.81, -.95,-.31}
8 next s
9 #
10 imgsave "5pointed.png", IMAGETYPE_PNG

Program 78: Save an Image

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 178

imgsave filename
imgsave filename, type

Save the current graphics output to an image file. If the type is
not specified the graphic will be saved as a Portable Network
Graphic (PNG) file.

Type maybe specified with either a string extension or using a
predefined constant.

String Constant

"png" IMAGETYPE_PNG

"jpg" or "jpeg" IMAGETYPE_JPG

"gif" IMAGETYPE_GIF

Images From a File:

The imgload statement allows you to load a picture from a file and display it
in your BASIC-256 programs. These images can be ones you have saved
yourself or pictures from other sources.

1 # imgloadball.kbs

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 78: Save an Image

Chapter 13: Images, WAVs, and Sprites Page 179

2 # load an image from a file
3
4 clg
5 for i = 1 to 50
6 imgload rand * graphwidth, rand * graphheight,

"greenball.png"
7 next i

Program 79: Imgload a Graphic

Program 79 Shows an example of this statement in action. The last argument
is the name of a file on your computer. It needs to be in the same folder as
the program, unless you specify a full path to it. Also notice that the
coordinates (x,y) represent the CENTER of the loaded image and not the top
left corner.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 79: Imgload a Graphic

Chapter 13: Images, WAVs, and Sprites Page 180

Most of the time you will want to save the program into the same
folder that the image or sound file is in BEFORE you run the
program. This will set your current working directory so that
BASIC-256 can find the file to load.

imgload x, y, filename
imgload x, y, scale, filename
imgload x, y, scale, rotation, filename

Read in the picture found in the file and display it on the graphics
output area. The values of x and y represent the location to place
the CENTER of the image.

Images may be loaded from many different file formats, including:
BMP, PNG, GIF, JPG, and JPEG.

Optionally scale (re-size) it by the decimal scale where 1 is full
size. Also you may also rotate the image clockwise around it's
center by specifying how far to rotate as an angle expressed in
radians (0 to 2p).

The imgload statement also allows optional scaling and rotation like the
stamp statement does. Look at Program 80 for an example.

1 # imgloadpicasso.kbs
2 # show img with rotation and scaling
3 # photo from

http://i988.photobucket.com/albums/af3/fikarvista/pic
asso_selfport1907.jpg

4
5 graphsize 500,500

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 181

6 clg
7 for i = 1 to 50
8 imgload graphwidth/2, graphheight/2, i/50,

2*pi*i/50, "picasso_selfport1907.jpg"
9 next i
10 say "hello Picasso."

Program 80: Imgload a Graphic with Scaling and Rotation

Playing Sounds From a WAV file:

So far we have explored making sounds and music using the sound
command and text to speech with the say statement. BASIC-256 will also
play sounds stored in WAV files. The playback of a sound from a WAV file will
happen in the background. Once the sound starts the program will continue
to the next statement and the sound will continue to play.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 80: Imgload a Graphic with Scaling and Rotation

Chapter 13: Images, WAVs, and Sprites Page 182

1 # numberpopper.kbs
2 # mp3 files from
3 # http://www.grsites.com/archive/sounds/
4
5 fastgraphics
6 wavplay "cartoon002.mp3"
7
8 speed = .05
9 for t = 1 to 3
10 n = int(rand * 6 + 1)
11 for pt = 1 to 200 step 10
12 font "Tahoma",pt,100
13 clg
14 color black
15 text 10,10, n
16 refresh
17 pause speed
18 next pt
19 speed = speed / 2
20 next t
21 # wait for sound to complete
22 wavwait
23
24 wavplay "people055.mp3"
25 wavwait
26 end

Program 81: Popping Numbers with Sound Effects

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 183

wavplay filename
wavplay (filename)
wavwait
wavstop

The wavplay statement loads a wave audio file (.wav) from the
current working folder and plays it. The playback will be
synchronous meaning that the next statement in the program will
begin immediately as soon as the audio begins playing.

Wavstop will cause the currently playing wave audio file to stop
the synchronous playback and wavwait will cause the program to
stop and wait for the currently playing sound to complete.

Moving Images - Sprites:

Sprites are special graphical objects that can be moved around the screen
without having to redraw the entire screen. In addition to being mobile you
can detect when one sprite overlaps (collides) with another. Sprites make
programming complex games and animations much easier.

1 # sprite1ball.kbs
2 # sounds from
3 # http://www.freesound.org/people/NoiseCollector
4
5 clg
6
7 spritedim 1
8
9 spriteload 0, "blueball.png"
10 spriteplace 0, 100,100
11 spriteshow 0
12
13 dx = rand * 5 + 5
14 dy = rand * 5 + 5
15

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 184

16 while true
17 spritemove 0, dx, dy
18 if spritex(0) <= spritew(0)/2 or spritex(0) >=

graphwidth - spritew(0)/2 then
19 dx = dx * -1
20 wavplay

"4359__NoiseCollector__PongBlipF4.wav"
21 end if
22 if spritey(0) <= spriteh(0)/2 or spritey(0) >=

graphheight - spriteh(0)/2 then
23 dy = dy * -1
24 wavplay

"4361__NoiseCollector__pongblipA_3.wav"
25 endif
26 pause .05
27 end while

Program 82: Bounce a Ball with Sprite and Sound Effects

As you can see in Program 82 the code to make a ball bounce around the
screen, with sound effects, is much easier than earlier programs to do this

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 82: Bounce a Ball with Sprite and Sound Effects

Chapter 13: Images, WAVs, and Sprites Page 185

type of animation. When using sprites we must tell BASIC-256 how many
there will be (spritedim), we need to set them up (spriteload , spritepoly,
or spriteplace), make them visible (spriteshow), and then move them
around (spritemove). In addition to these statements there are functions
that will tell us where the sprite is on the screen (spritex and spritey), how
big the sprite is (spritew and spriteh) and if the sprite is visible (spritev).

spritedim numberofsprites
spritedim (numberofsprites)

The spritedim statement initializes, or allocates in memory,
places to store the specified number of sprites. You may allocate
as many sprites as your program may require but your program
may slow down if you create too many sprites.

spriteload spritenumber, filename
spriteload (spritenumber, filename)

This statement reads an image file (GIF, BMP, PNG, JPG, or JPEG)
from the specified path and creates a sprite.

By default the sprite will be placed with its center at 0,0 and it will
be hidden. You should move the sprite to the desired position on
the screen (spritemove or spriteplace) and then show it
(spriteshow).

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 186

spritehide spritenumber
spritehide (spritenumber)

spriteshow spritenumber
spriteshow (spritenumber)

The spriteshow statement causes a loaded, created, or hidden
sprite to be displayed on the graphics output area.

Spritehide will cause the specified sprite to not be drawn on the
screen. It will still exist and may be shown again later.

spriteplace spritenumber, x, y
spriteplace (spritenumber, x, y)

The spriteplace statement allows you to place a sprite's center at
a specific location on the graphics output area.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 187

spritemove spritenumber, dx, dy
spritemove (spritenumber, dx, dy)

Move the specified sprite x pixels to the right and y pixels down.
Negative numbers can also be specified to move the sprite left and
up.

A sprite's center will not move beyond the edge of the current
graphics output window (0,0) to (graphwidth-1, graphheight-
1).

You may move a hidden sprite but it will not be displayed until you
show the sprite using the showsprite statement.

spritev(spritenumber)

This function returns a true value if a loaded sprite is currently
displayed on the graphics output area. False will be returned if it is
not visible.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 188

spriteh(spritenumber)
spritew(spritenumber)
spritex(spritenumber)
spritey(spritenumber)

These functions return various pieces of information about a
loaded sprite.

spriteh Returns the height of a sprite in pixels.

spritew Returns the width of a sprite in pixels.

spritex Returns the position on the x axis of the center
of the sprite.

spritey Returns the position on the y axis of the center
of the sprite.

The second sprite example (Program 83) we now have two sprites. The first
one (number zero) is stationary and the second one (number one) will
bounce off of the walls and the stationary sprite.

1 # spritebumper.kbs
2 # show two sprites with collision
3
4 color white
5 rect 0, 0, graphwidth, graphheight
6
7 spritedim 2
8
9 # stationary bumber
10 spriteload 0, "paddle.png"
11 spriteplace 0,graphwidth/2,graphheight/2
12 spriteshow 0
13

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 189

14 # moving ball
15 spriteload 1, "greenball.png"
16 spriteplace 1, 50, 50
17 spriteshow 1
18 dx = rand * 5 + 5
19 dy = rand * 5 + 5
20
21 while true
22 if spritex(1) <=0 or spritex(1) >= graphwidth -1

then
23 dx = dx * -1
24 end if
25 if spritey(1) <= 0 or spritey(1) >= graphheight -1

then
26 dy = dy * -1
27 end if
28 if spritecollide(0,1) then
29 dy = dy * -1
30 print "bump"
31 end if
32 spritemove 1, dx, dy
33 pause .05
34 end while

Program 83: Two Sprites with Collision

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 190

spritecollide(spritenumber1, spritenumber2)

This function returns true of the two sprites collide with or overlap
each other.

Sprites may also be created using a polygon as seen in Chapter 9: Custom
Graphics – Creating Your Own Shapes. This is accomplished using the
spritepoly statement.

1 # spritepoly.kbs
2 # create a sprite from a polygon
3 # that follows the mouse
4
5 spritedim 1
6 color red, blue
7 penwidth 1

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 83: Two Sprites with Collision

Chapter 13: Images, WAVs, and Sprites Page 191

8 spritepoly 0, {15,0, 30,10, 20,10, 20,30, 10,30,
10,10, 0,10}

9
10 color green
11 rect 0,0,graphwidth, graphheight
12
13 spriteshow 0
14 while true
15 spriteplace 0, mousex, mousey
16 pause .01
17 end while

Program 84: Creating a Sprite From a Polygon

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 84: Creating a Sprite From a Polygon

Chapter 13: Images, WAVs, and Sprites Page 192

spritepoly spritenumber, { points }
spritepoly (spritenumber, { points })

spritepoly spritenumber, array_variable
spritepoly (spritenumber, array_variable)

Create a new sprite from the list of points defining a polygon. The
top left corner of the polygon should be in the position 0,0 and the
sprite's size will be automatically created.

The "Big Program" for this chapter uses sprites and sounds to
create a paddle ball game.

1 # sprite_paddleball.kbs
2 # paddleball game made with sprites
3 # sounds from

http://www.freesound.org/people/NoiseCollector
4
5 print "paddleball game"
6 print "J and K keys move the paddle"
7 input "Press enter to start >", wait
8
9 color white
10 rect 0, 0, graphwidth, graphheight
11
12 spritedim 2
13 color blue, darkblue
14 spritepoly 0, {0,0, 80,0, 80,20, 70,20, 70,10, 10,10,

10,20, 0,20}

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 193

15 spriteplace 0, 100,270
16 spriteshow 0
17 spriteload 1, "greenball.png"
18 spriteplace 1, 100,100
19 spriteshow 1
20 penwidth 2
21
22 dx = rand * .5 + .25
23 dy = rand * .5 + .25
24
25 bounces = 0
26
27 while spritey(1) + spriteh(1) - 5 < spritey(0)
28 k = key
29 if chr(k) = "K" then
30 spritemove 0, 20, 0
31 end if
32 if chr(k) = "J" then
33 spritemove 0, -20, 0
34 end if
35 if spritecollide(0,1) then
36 # bounce back ans speed up
37 dy = dy * -1
38 dx = dx * 1.1
39 bounces = bounces + 1
40 wavstop
41 wavplay "96633__CGEffex__Ricochet_metal5.wav"
42 # move sprite away from paddle
43 while spritecollide(0,1)
44 spritemove 1, dx, dy
45 end while
46 end if
47 if spritex(1) <=0 or spritex(1) >= graphwidth -1

then
48 dx = dx * -1
49 wavstop
50 wavplay "4359__NoiseCollector__PongBlipF4.wav"
51 end if
52 if spritey(1) <= 0 then

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 194

53 dy = dy * -1
54 wavstop
55 wavplay "4361__NoiseCollector__pongblipA_3.wav"
56 end if
57 spritemove 1, dx, dy
58 # adjust the speed here
59 pause .002
60 end while
61
62 print "You bounced the ball " + bounces + " times."

Program 85: Paddleball with Sprites

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 85: Paddleball with Sprites

Chapter 13: Images, WAVs, and Sprites Page 195

Exercises:

i s d d i m e n s i o n o z u
s e j i e s c a l e h e w d w
k p v c i r z n r o y d a s o
z j r p m a u o z l u i v p h
a e m i t s t t o m e l w r s
c f v f t a m p c c l l a i e
q o h o t e e i a i g o i t t
w j l i m t l l d w p c t e i
q a o l i e p o a e f e w h r
w n v r i e t v a i t t j i p
q b p p t s s i m d h i s d s
o s v i l t i a r m t r r e c
u u r w o a g o y p s p r p z
h p a p g e y a n d s s e f s
s f t s b k i m g l o a d u o

collision, dimension, image, imgload, picture, rotation, scale,
spritecollide, spritedim, spritehide, spriteload, spritemove,
spriteplace, spritepoly, spriteshow, wavplay, wavstop, wavwait

1. Write a program to draw a coin, on a graphics window that is
100x100 pixels with a face on it. Save the image as “head.png”.
Have the same program erase the screen, draw the back side of
the coin, and save it as “tail.png”. Make the coins your own
design.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 196

2. Now write a simple coin toss program that displays the results
of a coin toss using the images created in program 1. Generate a
random number and test if the number is less than .5 then show
the heads image otherwise show the tails image.

For an extra challenge make random heads and tails appear on
the screen until the user presses a key.

3. Use a program like “Audacity” to record two WAV audio files,
one with your voice saying “heads” and the other saying “tails”.
Add these audio files to the program you wrote in 2.

4. Type in and modify Program 85: Paddleball with Sprites to
create a two player “ping-pong” type game. You will need to add
a third sprite for the “top” player and assign two keys to move
their paddle.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 13: Images, WAVs, and Sprites Page 197

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

