
Chapter 15: Arrays – Collections of Information. Page 208

Chapter 15: Arrays – Collections of
Information.

We have used simple string and numeric variables in many programs, but
they can only contain one value at a time. Often we need to work with
collections or lists of values. We can do this with either one-dimensioned or
two-dimensioned arrays. This chapter will show you how to create, initialize,
use, and re-size arrays.

One-Dimensional Arrays of Numbers:

A one-dimensional array allows us to create a list in memory and to access
the items in that list by a numeric address (called an index). Arrays can
contain any type of value (integer, decimal, or string).

Our first example of an array will be using numeric values.

1 # arraynumeric1d.kbs
2 # one-dimensional numeric array
3
4 dim a(4)
5
6 a[0] = 100
7 a[1] = 200
8 a[2] = a[0] + a[1]
9
10 inputfloat "Enter a number> ", a[3]
11
12 for t = 0 to 3
13 print "a[" + t + "] = " + a[t]
14 next t

Program 89: One-dimensional Numeric Array

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 209

Enter a number> 63
a[0] = 100
a[1] = 200
a[2] = 300
a[3] = 63.0

Sample Output 89: One-dimensional Numeric Array

dim variable(items)
dim variable(rows, columns)
dim variable(items) fill expression
dim variable(rows, columns) fill expression

The dim statement creates an array in the computer's memory
the size that was specified in the parenthesis. Sizes (items, rows,
and columns) must be integer values greater than or equal to one
(1).

The dim statement will NOT initialize the elements in the new
array unless you specify a fill value. The fill clause will assign the
value to all elements of the array.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 210

variable[index]
variable[rowindex, columnindex]

You can use an array reference (variable with index(s) in square
brackets) in your program almost anywhere you can use a simple
variable. The index or indexes must be integer values between
zero (0) and one less than the size used in the dim statement.

It may be confusing, but BASIC-256 uses zero (0) for the first
element in an array and the last element has an index one less
than the size. Computer people call this a zero-indexed array.

Arrays can also be used to store string values. All you have to do is store a
string in the array element.

15 # listoffriends.kbs
16 # use an array to store any number of names
17
18 print "make a list of my friends"
19 inputinteger "how many friends do you have?", n
20
21 dim names(n)
22 for i = 0 to n-1
23 input "enter friend name ?", names[i]
24 next i
25
26 # show the names
27 cls
28 print "my friends"
29 for i = 0 to n-1
30 print "friend number ";
31 print i + 1;
32 print " is " + names[i]
33 next i
34
35 # pick one at random

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 211

36 x = int(rand * n)
37 print "The winner is " + names[x]
38 end

Program 90: List of My Friends

make a list of my friends
how many friends do you have?3
enter friend name ?Kendra
enter friend name ?Bob
enter friend name ?Susan
 - screen clears -
my friends
friend number 1 is Kendra
friend number 2 is Bob
friend number 3 is Susan
The winner is Kendra

Sample Output 90: List of My Friends

We can use arrays of numbers to draw many balls bouncing on the screen at
once. Program 89 uses 5 arrays to store the location of each of the balls, it's
direction, and color. Loops are then used to initialize the arrays and to
animate the balls. This program also uses the rgb() function to calculate and
save the color values for each of the balls.

1 # manyballbounce.kbs
2 # use arrays to keep up with the direction,
3 # location, and color of many balls on the screen
4
5 fastgraphics
6
7 r = 10 # size of ball
8 balls = 50 # number of balls

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 212

9
10 # position of the balls - start them all at 0,0
11 dim x(balls) fill 0
12 dim y(balls) fill 0
13
14 # speed of the balls (set randomly)
15 dim dx(balls)
16 dim dy(balls)
17
18 # color of the balls (set randomly)
19 dim colors(balls)
20
21 for b = 0 to balls-1
22 # speed in x and y directions
23 dx[b] = rand * r + 2
24 dy[b] = rand * r + 2
25 # each ball has it's own color
26 colors[b] = rgb(rand*256, rand*256, rand*256)
27 next b
28
29 color green
30 rect 0,0,300,300
31
32 while true
33 # erase screen
34 clg
35 # now position and draw the balls
36 for b = 0 to balls -1
37 # move ball to new location
38 x[b] = x[b] + dx[b]
39 y[b] = y[b] + dy[b]
40 # if off the edges turn the ball around
41 if x[b] < 0 or x[b] > graphwidth then
42 dx[b] = dx[b] * -1
43 end if
44 # if off the top of bottom turn the ball

around
45 if y[b] < 0 or y[b] > graphheight then
46 dy[b] = dy[b] * -1

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 213

47 end if
48 # draw new ball
49 color colors[b]
50 circle x[b],y[b],r
51 next b
52 # update the display
53 refresh
54 pause .05
55 end while

Program 91: Bounce Many Balls

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 214

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 215

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 216

Assigning Arrays:

We have seen the use of the curly brackets ({}) to play music, draw
polygons, and define stamps. The curly brackets can also be used to create
and assign an entire array with custom values.

1 # arrayassign.kbs
2 # using a list of values to create an assign an array
3
4 numbers = {56, 99, 145}
5 names = {"Bob", "Jim", "Susan"}
6
7 for i = 0 to 2
8 print numbers[i] + " " + names[i]
9 next i

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 91: Bounce Many Balls

