
Chapter 15: Arrays – Collections of Information. Page 217

Program 92: Assigning an Array With a List

56 Bob
99 Jim
145 Susan

Sample Output 92: Assigning an Array With a List

variable = {value0, value1, … }
variable = {{v00, v01, …},{v10, v11, …},{v20,

v21, …},…}

A variable will be dimensioned into an array and assigned values
(starting with index 0) from a list enclosed in curly braces. The
values can be both numbers and strings.

You may assign either a one or two-dimensional array using the
braces.

Sound and Arrays:

In Chapter 3 we saw how to use a list of frequencies and durations (enclosed
in curly braces) to play multiple sounds at once. The sound statement will
also accept a list of frequencies and durations from an array. The array
should have an even number of elements; the frequencies should be stored
in element 0, 2, 4, …; and the durations should be in elements 1, 3, 5, ….

The sample (Program 93) below uses a simple linear formula to make a fun
sonic chirp.

1 # spacechirp.kbs

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 218

2 # play a spacy sound
3
4 # even values 0,2,4... - frequency
5 # odd values 1,3,5... - duration
6
7 # chirp starts at 100hz and increases by 40 for each

of the 50 total sounds in list, duration is always 10
8
9 dim a(100)
10 for i = 0 to 98 step 2
11 a[i] = i * 40 + 100
12 a[i+1] = 10
13 next i
14 sound a[]
15 end

Program 93: Space Chirp Sound

What kind of crazy sounds can you program. Experiment with the
formulas to change the frequencies and durations.

Graphics and Arrays:

In Chapter 8 we also saw the use of lists for creating polygons and stamps.
Arrays may also be used to draw stamps, polygons, and sprites. This may
help simplify your code by allowing the same shape to be defined once,
stored in an array, and used in various places in your program.

In an array used for a shape, the even elements (0, 2, 4, …) contain the x
value for each of the points and the odd element (1, 3, 5, …) contain the y
value for the points. The array will have two values for each point in the

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 219

shape.

In Program 94 we will use the stamp from the mouse chapter to draw a big X
with a shadow. This is accomplished by stamping a gray shape shifted in the
direction of the desired shadow and then stamping the object that is
projecting the shadow.

1 # shadowstamp.kbs
2 # create a stamp from an array
3
4 xmark = {-1, -2, 0, -1, 1, -2, 2, -1, 1, 0, 2, 1, 1,

2, 0, 1, -1, 2, -2, 1, -1, 0, -2, -1}
5
6 clg
7 color grey
8 stamp 160,165,50,xmark[]
9 color black
10 stamp 150,150,50,xmark[]

Program 94: Shadow Stamp

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 220

Arrays can also be used to create stamps or polygons mathematically. In
Program 95 we create an array with 10 elements (5 points) and assign
random locations to each of the points to draw random polygons. BASIC-256
will fill the shape the best it can but when lines cross, as you will see, the fill
sometimes leaves gaps and holes.

1 # randompoly.kbs
2 # make an 5 sided random polygon
3
4 dim shape(10)
5
6 for t = 0 to 8 step 2
7 x = 300 * rand
8 y = 300 * rand
9 shape[t] = x
10 shape[t+1] = y
11 next t
12

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 94: Shadow Stamp

Chapter 15: Arrays – Collections of Information. Page 221

13 clg
14 color black
15 poly shape[]

Program 95: Randomly Create a Polygon

Advanced - Two Dimensional Arrays:

So far in this chapter we have explored arrays as lists of numbers or strings.
We call these simple arrays one-dimensional arrays because they resemble a
line of values. Arrays may also be created with two-dimensions representing
rows and columns of data. Program 96 uses both one and two-dimensional
arrays to calculate student's average grade.

1 # grades.kbs
2 # calculate average grades for each student

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 95: Randomly Create a Polygon

Chapter 15: Arrays – Collections of Information. Page 222

3 # and whole class using a two dimensional array
4
5 nstudents = 3 # number of students
6 nscores = 4 # number of scores per student
7
8 dim students(nstudents)
9 dim grades(nstudents, nscores)
10
11 # store the scores as columns and the students as

rows
12 # first student
13 students[0] = "Jim"
14 grades[0,0] = 90
15 grades[0,1] = 92
16 grades[0,2] = 81
17 grades[0,3] = 55
18 # second student
19 students[1] = "Sue"
20 grades[1,0] = 66
21 grades[1,1] = 99
22 grades[1,2] = 98
23 grades[1,3] = 88
24 # third student
25 students[2] = "Tony"
26 grades[2,0] = 79
27 grades[2,1] = 81
28 grades[2,2] = 87
29 grades[2,3] = 73
30
31 total = 0
32 for row = 0 to nstudents-1
33 studenttotal = 0
34 for column = 0 to nscores-1
35 studenttotal = studenttotal + grades[row,

column]
36 total = total + grades[row, column]
37 next column
38 print students[row] + "'s average is ";
39 print studenttotal / nscores

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 223

40 next row
41 print "class average is ";
42 print total / (nscores * nstudents)
43
44 end

Program 96: Grade Calculator

Jim's average is 79.5
Sue's average is 87.75
Tony's average is 80
class average is 82.416667

Sample Output 96: Grade Calculator

Really Advanced - Array Sizes and Passing Arrays to
Subroutines and Functions:

Sometimes we need to create programming code that would work with an
array of any size. If you specify a question mark as a index, row, or column
number in the square bracket reference of an array BASIC-256 will return the
dimensioned size. In Program 92 we modified Program 91 to display the
array regardless of it's length. You will see the special [?] used on line 16 to
return the current size of the array.

1 # size.kbs
2 # arraylength and passing to subroutine
3
4 print "The Number Array:"
5 number = {77, 55, 33}
6 call showarray(ref(number))
7
8 print "The Random Array:"
9 dim r(5)

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 224

10 for a = 0 to r[?] - 1
11 r[a] = int(rand*10)+1
12 next a
13 call showarray(ref(r))
14 #
15 end
16 #
17 subroutine showarray(a)
18 print "has " + a[?] + " elements."
19 for i = 0 to a[?] - 1
20 print "element " + i + " " + a[i]
21 next i
22 end subroutine

Program 97: Get Array Size

The Number Array:
has 3 elements.
element 0 77
element 1 55
element 2 33
The Random Array:
has 5 elements.
element 0 7
element 1 5
element 2 1
element 3 9
element 4 10

Sample Output 97: Get Array Size

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 225

array[?]
array[?,]
array[,?]

The [?] returns the length of a one-dimensional array or the total
number of elements (rows * column) in a two-dimensional array.
The [?,] reference returns the number of rows and the [,?]
reference returns the number of columns of a two dimensional
array.

ref(array)

The ref() function is used to pass a reference to an array to a
function or subroutine.

If the subroutine changes an element in the referenced array the
value in the array will change outside the subroutine or function.
Remember this is different behavior than other variables, who's
values are copied to new variables within the function or
subroutine.

Really Really Advanced - Resizing Arrays:

BASIC-256 will also allow you to re-dimension an existing array. The redim
statement will allow you to re-size an array and will preserve the existing
data. If the new array is larger, the new elements will be filled with zero (0)
or the empty string (""). If the new array is smaller, the values beyond the
new size will be truncated (cut off).

1 # redim.kbs
2
3 number = {77, 55, 33}
4 # create a new element on the end

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 226

5 redim number(4)
6 number[3] = 22
7 #
8 for i = 0 to 3
9 print i + " " + number[i]
10 next i

Program 98: Re-Dimension an Array

0 77
1 55
2 33
3 22

Sample Output 98: Re-Dimension an Array

redim variable(items)
redim variable(rows, columns)

The redim statement re-sizes an array in the computer's memory.
Data previously stored in the array will be kept, if it fits.

When resizing two-dimensional arrays the values are copied in a
linear manner. Data may be shifted in an unwanted manner if you
are changing the number of columns.

The "Big Program" for this chapter uses three numeric arrays to
store the positions and speed of falling space debris. You are not
playing pong but you are trying to avoid all of them to score
points.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 227

1 # spacewarp.kbs
2 # the falling space debris game
3
4 # setup balls and arrays for them
5 balln = 5
6 dim ballx(balln)
7 dim bally(balln)
8 dim ballspeed(balln)
9 ballr = 10 # radius of balls
10
11 # setup minimum and maximum values
12 minx = ballr
13 maxx = graphwidth - ballr
14 miny = ballr
15 maxy = graphheight - ballr
16
17 # initial score
18 score = 0
19
20 # setup player size, move distance, and location
21 playerw = 30
22 playerm = 10
23 playerh = 10
24 playerx = (graphwidth - playerw)/2
25
26 # setup other variables
27 keyj = asc("J") # value for the 'j' key
28 keyk = asc("K") # value for the 'k' key
29 keyq = asc("Q") # value for the 'q' key
30 growpercent = .20 # random growth - bigger is faster
31 speed = .15 # the lower the faster
32
33 print "spacewarp - use j and k keys to avoid the

falling space debris"
34 print "q to quit"
35
36 fastgraphics

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 228

37
38 # setup initial ball positions and speed
39 for n = 0 to balln-1
40 bally[n] = miny
41 ballx[n] = int(rand * (maxx-minx)) + minx
42 ballspeed[n] = int(rand * (2*ballr)) + 1
43 next n
44
45 more = true
46 while more
47 pause speed
48 score = score + 1
49
50 # clear screen
51 color black
52 rect 0, 0, graphwidth, graphheight
53
54 # draw balls and check for collission
55 color white
56 for n = 0 to balln-1
57 bally[n] = bally[n] + ballspeed[n]
58 if bally[n] > maxy then
59 # ball fell off of bottom - put back at top
60 bally[n] = miny
61 ballx[n] = int(rand * (maxx-minx)) + minx
62 ballspeed[n] = int(rand * (2*ballr)) + 1
63 end if
64 circle ballx[n], bally[n], ballr
65 if ((bally[n]) >= (maxy-playerh-ballr)) and

((ballx[n]+ballr) >= playerx) and ((ballx[n]-ballr)
<= (playerx+playerw)) then more = false

66 next n
67
68 # draw player
69 color red
70 rect playerx, maxy - playerh, playerw, playerh
71 refresh
72
73 # make player bigger

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 229

74 if (rand<growpercent) then playerw = playerw + 1
75
76 # get player key and move if key pressed
77 k = key
78 if k = keyj then playerx = playerx - playerm
79 if k = keyk then playerx = playerx + playerm
80 if k = keyq then more = false
81
82 # keep player on screen
83 if playerx < 0 then playerx = 0
84 if playerx > graphwidth - playerw then playerx =

graphwidth - playerw
85
86 end while
87
88 print "score " + string(score)
89 print "you died."
90 end

Program 99: Big Program - Space Warp Game

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 230

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 99: Big Program - Space Warp Game

Chapter 15: Arrays – Collections of Information. Page 231

Exercises:

a t d v i t f p a u
y o y n s z o n c b
e r d q a i m n o e
o e o s c o l u m n
x e d m c z d y v i
c o l l e c t i o n
a r r a y m n h z y
y h t s i l e g d f
d i m e n s i o n l
y j n f z r o w l t

array, collection, column, dimension, index, list, memory, row

1. Ask the user for how many numbers they want to add together
and display the total. Create an array of the user chosen size,
prompt the user to enter the numbers and store them in the
array. Once the numbers are entered loop through the array
elements and print the total of them.

2. Add to Problem 1 logic to display the average after calculating
the total.

3. Add to Problem 1 logic to display the minimum and the
maximum values. To calculate the minimum: 1) copy the first
element in the array into a variable; 2) compare all of the
remaining elements to the variable and if it is less than the saved
value then save the new minimum.

4. Take the program from Problem 2 and 3 and create functions

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 15: Arrays – Collections of Information. Page 232

to calculate and return the minimum, maximum, and average.
Pass the array to the function and use the array length operator to
make the functions work with any array passed.

5. Create a program that asks for a sequence of numbers, like in
Problem 1. Once the user has entered the numbers to the array
display a table of each number multiplied by each other number.
Hint: you will need a loop nested inside another loop.

n> 5
number 0> 4
number 1> 7
number 2> 9
number 3> 12
number 4> 45
16 28 36 48 180
28 49 63 84 315
36 63 81 108 405
48 84 108 144 540
180 315 405 540 2025

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 233

Chapter 16: Mathematics – More Fun With
Numbers.

In this chapter we will look at some additional mathematical operators and
functions that work with numbers. Topics will be broken down into four
sections: 1) new operators; 2) new integer functions, 3) new floating-point
functions, and 4) trigonometric functions.

New Operators:

In addition to the basic mathematical operations we have been using since
the first chapter, there are three more operators in BASIC-256. Operations
similar to these three operations exist in most computer languages. They are
the operations of modulo, integer division, and power.

Operation Operator Description

Modulo % Return the remainder of an integer division.

Integer Division \ Return the whole number of times one
integer can be divided into another.

Power ^ Raise a number to the power of another
number.

Modulo Operator:

The modulo operation returns the remainder part of integer division. When
you do long division with whole numbers, you get a remainder – that is the
same as the modulo.

1 # modulo.kbs

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 234

2 inputinteger "enter a number ", n
3 if n % 2 = 0 then print "divisible by 2"
4 if n % 3 = 0 then print "divisible by 3"
5 if n % 5 = 0 then print "divisible by 5"
6 if n % 7 = 0 then print "divisible by 7"
7 end

Program 100: The Modulo Operator

enter a number 10
divisible by 2
divisible by 5

Sample Output 100: The Modulo Operator

expression1 % expression2

The Modulo (%) operator performs integer division of expression1
divided by expression2 and returns the remainder of that process.

If one or both of the expressions are not integer values (whole
numbers) they will be converted to an integer value by truncating
the decimal (like in the int() function) portion before the operation
is performed.

You might not think it, but the modulo operator (%) is used quite often by
programmers. Two common uses are; 1) to test if one number divides into
another (Program 100) and 2) to limit a number to a specific range (Program
101).

1 # moveballmod.kbs

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 235

2 # rewrite of moveball.kbs using the modulo operator
to wrap the ball around the screen

3
4 print "use i for up, j for left, k for right, m for

down, q to quit"
5
6 fastgraphics
7 clg
8 ballradius = 20
9
10 # position of the ball
11 # start in the center of the screen
12 x = graphwidth /2
13 y = graphheight / 2
14
15 # draw the ball initially on the screen
16 call drawball(x, y, ballradius)
17
18 # loop and wait for the user to press a key
19 while true
20 k = key
21 if k = asc("I") then
22 # y can go negative, + graphheight keeps it

positive
23 y = (y - ballradius + graphheight) %

graphheight
24 call drawball(x, y, ballradius)
25 end if
26 if k = asc("J") then
27 x = (x - ballradius + graphwidth) % graphwidth
28 call drawball(x, y, ballradius)
29 end if
30 if k = asc("K") then
31 x = (x + ballradius) % graphwidth
32 call drawball(x, y, ballradius)
33 end if
34 if k = asc("M") then
35 y = (y + ballradius) % graphheight
36 call drawball(x, y, ballradius)

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 236

37 end if
38 if k = asc("Q") then end
39 end while
40
41 subroutine drawball(bx, by, br)
42 color white
43 rect 0, 0, graphwidth, graphheight
44 color red
45 circle bx, by, br
46 refresh
47 end subroutine

Program 101: Move Ball - Use Modulo to Keep on Screen

Integer Division Operator:

The Integer Division (\) operator does normal division but it works only with
integers (whole numbers) and returns an integer value. As an example, 13
divided by 4 is 3 remainder 1 – so the result of the integer division is 3.

1 # integerdivision.kbs
2 inputinteger "dividend ", dividend
3 inputinteger "divisor ", divisor
4 print dividend + " / " + divisor + " is ";
5 print dividend \ divisor;
6 print "r";
7 print dividend % divisor;

Program 102: Check Your Long Division

dividend 43
divisor 6
43 / 6 is 7r1

Sample Output 102: Check Your Long Division

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 237

expression1 \ expression2

The Integer Division (\) operator performs division of
expression1 / expression2 and returns the whole number of times
expression1 goes into expression2.

If one or both of the expressions are not integer values (whole
numbers), they will be converted to an integer value by truncating
the decimal (like in the int() function) portion before the operation
is performed.

Power Operator:

The power operator will raise one number to the power of another number.

1 # power.kbs
2 for t = 0 to 16
3 print "2 ^ " + t + " = ";
4 print 2 ^ t
5 next t

Program 103: The Powers of Two

2 ^ 0 = 1
2 ^ 1 = 2
2 ^ 2 = 4
2 ^ 3 = 8
2 ^ 4 = 16
2 ^ 5 = 32
2 ^ 6 = 64
2 ^ 7 = 128
2 ^ 8 = 256
2 ^ 9 = 512
2 ^ 10 = 1024

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 238

2 ^ 11 = 2048
2 ^ 12 = 4096
2 ^ 13 = 8192
2 ^ 14 = 16384
2 ^ 15 = 32768
2 ^ 16 = 65536

Sample Output 103: The Powers of Two

expression1 ^ expression2

The Power (^) operator raises expression1 to the expression2
power.

The mathematical expression a=bc would be written in BASIC-
256 as a = b ^ c.

New Integer Functions:

The three new integer functions in this chapter all deal with how to convert
strings and floating-point numbers to integer values. All three functions
handle the decimal part of the conversion differently.

In the int() function the decimal part is just thrown away, this has the same
effect of subtracting the decimal part from positive numbers and adding it to
negative numbers. This can cause troubles if we are trying to round and
there are numbers less than zero (0).

The ceil() and floor() functions sort of fix the problem with int(). Ceil() always
adds enough to every floating-point number to bring it up to the next whole
number while floor(0) always subtracts enough to bring the floating-point
number down to the closest integer.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 239

We have been taught to round a number by simply adding 0.5 and drop the
decimal part. If we use the int() function, it will work for positive numbers
but not for negative numbers. In BASIC-256 to round we should always use a
formula like a= floor b0.5 .

Function Description

int(expression) Convert an expression (string, integer,
or decimal value) to an integer (whole
number). When converting a floating-
point value the decimal part is
truncated (ignored). If a string does
not contain a number a zero is
returned.

ceil(expression) Converts a floating-point value to the
next highest integer value.

floor(expression) Converts a floating-point expression to
the next lowers integer value. You
should use this function for rounding
a= floor b0.5 .

1 # intceilfloor.kbs
2 for t = 1 to 10
3 n = rand * 100 - 50
4 print n;
5 print " int=" + int(n);
6 print " ceil=" + ceil(n);
7 print " floor=" + floor(n)
8 next t

Program 104: Difference Between Int, Ceiling, and Floor

-46.850173 int=-46 ceil=-46 floor=-47

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 240

-43.071987 int=-43 ceil=-43 floor=-44
23.380133 int=23 ceil=24 floor=23
4.620722 int=4 ceil=5 floor=4
3.413543 int=3 ceil=4 floor=3
-26.608505 int=-26 ceil=-26 floor=-27
-18.813465 int=-18 ceil=-18 floor=-19
7.096065 int=7 ceil=8 floor=7
23.482759 int=23 ceil=24 floor=23
-45.463169 int=-45 ceil=-45 floor=-46

Sample Output 104: Difference Between Int, Ceiling, and Floor

New Floating-Point Functions:

The mathematical functions that wrap up this chapter are ones you may need
to use to write some programs. In the vast majority of programs these
functions will not be needed.

Function Description

abs(expression) Converts a floating-point or integer
expression to an absolute value.

log(expression) Returns the natural logarithm (base e)
of a number.

log10(expression) Returns the base 10 logarithm of a
number.

Advanced - Trigonometric Functions:

Trigonometry is the study of angles and measurement. BASIC-256 includes
support for the common trigonometric functions. Angular measure is done in
radians (0-2p). If you are using degrees (0-360) in your programs you must
convert to use the "trig" functions.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 241

Function Description

cos(expression) Return the cosine of an angle.

sin(expression) Return the sine of an angle.

tan(expression) Return the tangent of an angle.

degrees(expression) Convert Radians (0 – 2p) to
Degrees (0-360).

radians(expression) Convert Degrees (0-360) to Radians
(0 – 2p).

acos(expression) Return the inverse cosine.

asin(expression) Return the inverse sine.

atan(expression) Return the inverse tangent.

The discussion of the first three functions will refer to the sides of a right
triangle. Illustration 24 shows one of these with it's sides and angles labeled.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 24: Right Triangle

Chapter 16: Mathematics – More Fun With Numbers. Page 242

Cosine:

A cosine is the ratio of the length of the adjacent leg over the length of the

hypotenuse cos A=
b
c . The cosine repeats itself every 2p radians and has a

range from -1 to 1. Illustration 24 graphs a cosine wave from 0 to 2p radians.

Sine:

The sine is the ratio of the opposite leg over the hypotenuse sin A=
a
c . The

sine repeats itself every 2p radians and has a range from -1 to 1. You have
seen diagrams of sine waves in Chapter 3 as music was discussed.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 25: Cos() Function

Illustration 26: Sin() Function

Chapter 16: Mathematics – More Fun With Numbers. Page 243

Tangent:

The tangent is the ratio of the adjacent side over the opposite side

tan A=
a
b . The tangent repeats itself every p radians and has a range from

-∞ to ∞. The tangent has this range because when the angle approaches
½p radians the opposite side gets very small and will actually be zero when
the angle is ½p radians.

Degrees Function:

The degrees() function does the quick mathematical calculation to convert
an angle in radians to an angle in degrees. The formula used is
degrees=radians/ 2∗360 .

Radians Function:

The radians() function will convert degrees to radians using the formula
radians=degrees /360∗2 . Remember all of the trigonometric functions in

BASIC-256 use radians and not degrees to measure angles.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 27: Tan() Function

Chapter 16: Mathematics – More Fun With Numbers. Page 244

Inverse Cosine:

The inverse cosine function acos() will return an angle measurement in
radians for the specified cosine value. This function performs the opposite of
the cos() function.

Inverse Sine:

The inverse sine function asin() will return an angle measurement in radians
for the specified sine value. This function performs the opposite of the sin()
function.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 28: Acos() Function

Chapter 16: Mathematics – More Fun With Numbers. Page 245

Inverse Tangent:

The inverse tangent function atan() will return an angle measurement in
radians for the specified tangent value. This function performs the opposite
of the tan() function.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 30: Atan() Function

Illustration 29: Asin() Function

Chapter 16: Mathematics – More Fun With Numbers. Page 246

The big program this chapter allows the user to enter two positive
whole numbers and then performs long division. This program
used logarithms to calculate how long the numbers are, modulo
and integer division to get the individual digits, and is generally a
very complex program. Don't be scared or put off if you don't
understand exactly how it works, yet.

1 # handyclock.kbs
2
3 fastgraphics
4
5 while true
6 clg
7 # draw outline
8 color black, white
9 penwidth 5
10 circle 150,150,105
11 # draw the 60 marks (every fifth one make it

larger)
12 color black
13 penwidth 1
14 for m = 0 to 59
15 a = 2 * pi * m / 60
16 if m % 5 = 0 then
17 pip = 5
18 else
19 pip = 1
20 end if
21 circle 150-sin(a)*95,150-cos(a)*95,pip
22 next m
23 # draw the hands
24 h = hour % 12 * 60 / 12 + minute/12 + second /

3600
25 call drawhand(150,150,h,50,6,green)
26 m = minute + second / 60

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 247

27 call drawhand(150,150,m,75,4,red)
28 call drawhand(150,150,second,100,3,blue)
29 refresh
30 pause 1
31 end while
32
33 subroutine drawhand(x, y, f, l, w, handcolor)
34 # pass the location x and y
35 # f as location on face of clock 0-59
36 # length, width, and color of the hand
37 color handcolor
38 stamp x, y, 1, f/60*2*pi - pi / 2, {0,-w,l,0,0,w}
39 end subroutine

Program 105: Big Program – Clock with Hands

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 105: Big Program – Clock with Hands

Chapter 16: Mathematics – More Fun With Numbers. Page 248

Exercises:

e c e i l i n g n d a b
f t z n n u r a r b g s
c y i t a e t e s m o k
f s r s g a m p h c t j
a a r e o a l t a n i s
t o t o i p i l e p d n
t n l n o r p c c o e a
i a d u a l a o o w g i
r e o g d j f s s e r d
r o o l d o i x k r e a
r l p a f n m w c s e r
d s h y p o t e n u s e

abs, acos, adjacent, asin, atan, ceiling, cos, degrees, float, floor,
hypotenuse, int, integer, logarithm, modulo, opposite, power,
radians, remainder, sin, tan

1. Have the user input a decimal number. Display the number it as
a whole number and the closest faction over 1000 that is possible.

2. Take the program from Problem 1 and use a loop to reduce the
fraction by dividing the numerator and denominator by common
factors.

3. Write a program to draw a regular polygon with any number of
sides (3 and up). Place it's center in the center of the graphics
window and make its vertices 100 pixels from the center. Hint: A
circle can be drawn by plotting points a specific radius from a
point. The following plots a circle with a radius of 100 pixels
around the point 150,150.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 16: Mathematics – More Fun With Numbers. Page 249

for a = 0 to 2*pi step .01
 plot 150-100*sin(a),150-100*cos(a)
next a

6 sided 7 sided 12 sided

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

