
Chapter 17: Working with Strings. Page 250

Chapter 17: Working with Strings.

We have used strings to store non-numeric information, build output, and
capture input. We have also seen, in Chapter 11, using the Unicode values of
single characters to build strings.

This chapter shows several new functions that will allow you to manipulate
string values.

The String Functions:

BASIC-256 includes eight common functions for the manipulation of strings.
Table 8 includes a summary of them.

Function Description

string(expression) Convert expression (string, integer, or
decimal value) to a string value.

length(string) Returns the length of a string.

left(string, length) Returns a string of length characters
starting from the left.

right(string, length) Returns a string of length characters
starting from the right.

mid(string, start, length) Returns a string of length characters
starting from the middle of a string.

upper(expression) Returns an upper case string.

lower(expression) Returns a lower case string.

instr(haystack, needle) Searches the string "haystack" for the
"needle" and returns it's location.

Table 8: Summary of String Functions

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 251

String() Function:

The string() function will take an expression of any format and will return a
string. This function is a convenient way to convert an integer or floating-
point number into characters so that it may be manipulated as a string.

1 # string.kbs
2 # convert a number to a string
3
4 a = string(10 + 13)
5 print a
6 b = string(2 * pi)
7 print b

Program 106: The String Function

23
6.283185

Sample Output 106: The String Function

string(expression)

Convert expression (string, integer, or decimal value) to a string
value.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 252

Length() Function:

The length() function will take a string expression and return it's length in
characters (or letters).

1 # length.kbs
2 # find length of a string
3
4 # should print 6, 0, and 17
5 print length("Hello.")
6 print length("")
7 print length("Programming Rulz!")

Program 107: The Length Function

6
0
17

Sample Output 107: The Length Function

length(expression)

Returns the length of the string expression. Will return zero (0) for
the empty string "".

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 253

Left(), Right() and Mid() Functions:

The left(), right(), and mid() functions will extract sub-strings (or parts of a
string) from a larger string.

1 # leftrightmid.kbs
2 # show right, left, and mid string functions
3
4 a = "abcdefghijklm"
5
6 print left(a,4) # prints first 4 letters
7
8 print right(a,2) # prints last 2 letters
9
10 print mid(a,4,3) # prints 4th-7th letters
11 print mid(a,10,9) # prints 10th and 11th letters

Program 108: The Left, Right, and Mid Functions

abcd
kl
def
jklm

Sample Output 108: The Left, Right, and Mid Functions

left(string, length)

Return a sub-string from the left end of a string. If length is equal
or greater then the actual length of the string the entire string will
be returned.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 254

right(string, length)

Return a sub-string from the right end of a string. If length is
equal or greater then the actual length of the string the entire
string will be returned.

mid(string, start, length)

Return a sub-string of specified length from somewhere on the
middle of a string. The start parameter specifies where the sub-
string begins (1 = beginning of string).

Upper() and Lower() Functions:

The upper() and lower() functions simply will return a string of upper case
or lower case letters. These functions are especially helpful when you are
trying to perform a comparison of two strings and you do not care what case
they actually are.

1 # upperlower.kbs
2
3 a = "Hello."
4
5 print lower(a) # prints all lowercase
6

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 255

7 print upper(a) # prints all UPPERCASE

Program 109: The Upper and Lower Functions

hello.
HELLO.

Sample Output 109: The Upper and Lower Functions

lower(string)
upper(string)

Returns an all upper case or lower case copy of the string
expression. Non-alphabetic characters will not be modified.

Instr() Function:

The instr() function searches a string for the first occurrence of another
string. The return value is the location in the big string of the smaller string.
If the substring is not found then the function will return a zero (0).

1 # instr.kbs
2 # is one string inside another
3
4 a = "abcdefghijklm"
5 print 'the location of "hi" is ';
6 print instr(a,"hi")
7 print 'the location of "bye" is ';
8 print instr(a,"bye")

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 256

Program 110: The Instr Function

the location of "hi" is 8
the location of "bye" is 0

Sample Output 110: The Instr Function

instr(haystack, needle)

Find the sub-string (needle) in another string expression
(haystack). Return the character position of the start. If sub-string
is not found return a zero (0).

The decimal (base 10) numbering system that is most commonly
used uses 10 different digits (0-9) to represent numbers.

Imagine if you will what would have happened if there were only 5
digits (0-4) – the number 23 (2∗1013∗100) would become
43 (4∗513∗50) to represent the same number of items. This
type of transformation is called radix (or base) conversion.

The computer internally does not understand base 10 numbers
but converts everything to base 2 (binary) numbers to be stored in
memory.

The "Big Program" this chapter will convert a positive integer from
any base 2 to 36 (where letters are used for the 11th - 26th digits)
to any other base.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 257

1 # radix.kbs
2 # convert a number from one base (2-36) to another
3
4 digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
5
6 frombase = getbase("from base")
7 inputstring "number in base " + frombase + " >",

number
8 number = upper(number)
9
10 # convert number to base 10 and store in n
11 n = 0
12 for i = 1 to length(number)
13 n = n * frombase
14 n = n + instr(digits, mid(number, i, 1)) - 1
15 next i
16
17 tobase = getbase("to base")
18
19 # now build string in tobase
20 result = ""
21 while n <> 0
22 result = mid(digits, n % tobase + 1, 1) + result
23 n = n \ tobase
24 end while
25
26 print "in base " + tobase + " that number is " +

result
27 end
28
29 function getbase(message)
30 # get a base from 2 to 36
31 do
32 inputinteger message+"> ", base
33 until base >= 2 and base <= 36
34 return base
35 end function

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 258

Program 111: Big Program - Radix Conversion

from base> 10
number in base 10 >999
to base> 16
in base 16 that number is 3E7

Sample Output 111: Big Program - Radix Conversion

Exercises:

u r h t g n e l
p g i r a g k f
p r n l c f l r
e q i i e f e t
r d r g r f x s
v i i r h t t n
p m m x o t s i
r e w o l f w i

instr, left, length, lower, mid, right, string, upper

1. Have the user enter a string and display the string backwards.

2. Modify problem 1 to create a palindrome testing program.
Remove all characters from the string that are not letters before
reversing it. Compare the results and print a message that the
text entered is the same backwards as forwards.

enter a string >never odd or even
neveroddoreven
neveroddoreven

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 17: Working with Strings. Page 259

is a palindrome

3. You work for a small retail store that hides the original cost of
an item on the price tag using an alphabetic code. The code is
“roygbivace” where the letter 'r' is used for a 0, 'o' for a 1, … and
'e' is used for a 9. Write a program that will convert a numeric
cost to the code and a code to a cost.

cost or code >9.84
ecb

cost or code >big
4.53

4: You and your friend want to communicate in a way that your
friends can't easily read. The Cesar cipher
(http://en.wikipedia.org/wiki/Caesar_cipher) is an easy but not
very secure way to encode a message. If you and your friend
agree to shift the same number of letters then you can easily
share a secret message. Decoding a message is accomplished by
applying a shift of 26 minus the original shift.

A sample of some of the shifts for the letters A-D are shown
below. Notice that the letters wrap around.

Shift A B C D

1 B C D E

13 M N O P

25 Z A B C

Write a program that asks for the shift and for a string and
displays the text with the cipher applied.

shift >4
message >i could really go for

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

http://en.wikipedia.org/wiki/Caesar_cipher

Chapter 17: Working with Strings. Page 260

some pizza
M GSYPH VIEPPC KS JSV WSQI TMDDE

shift >22
message >M GSYPH VIEPPC KS JSV
WSQI TMDDE
I COULD REALLY GO FOR SOME PIZZA

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

