
Chapter 19: Stacks, Queues, Lists, and Sorting Page 274

Chapter 19: Stacks, Queues, Lists, and
Sorting

This chapter introduces a few advanced topics that are commonly covered in
the first Computer Science class at the University level. The first three topics
(Stack, Queue, and Linked List) are very common ways that information is
stored in a computer system. The last two are algorithms for sorting
information.

Stack:

A stack is one of the common data structures used by programmers to do
many tasks. A stack works like the "discard pile" when you play the card
game "crazy-eights". When you add a piece of data to a stack it is done on
the top (called a "push") and these items stack upon each other. When you
want a piece of information you take the top one off the stack and reveal the
next one down (called a "pop"). Illustration 31 shows a graphical example.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 275

The operation of a stack can also be described as "last-in, first-out" or LIFO
for short. The most recent item added will be the next item removed.
Program 116 implements a stack using an array and a pointer to the most
recently added item. In the "push" subroutine you will see array logic that
will re-dimension the array to make sure there is enough room available in
the stack for virtually any number of items to be added.

1 # stack.kbs
2 # implementing a stack using an array
3
4 dim stack(1) # array to hold stack with initial size
5 nstack = 0 # number of elements on stack
6 global stack, nstack
7
8 call push(1)
9 call push(2)
10 call push(3)
11 call push(4)
12 call push(5)
13

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 31: What is a Stack

Item

Item

Item

Item
Item

Push
(Add One)

Pop
(Take One)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 276

14 while not empty()
15 print pop()
16 end while
17
18 end
19
20 function empty()
21 # return true if the start is empty
22 return nstack=0
23 end function
24
25 function pop()
26 # get the top number from stack and return it
27 # or print a message and return -1
28 if nstack = 0 then
29 print "stack empty"
30 return -1
31 end if
32 nstack = nstack - 1
33 value = stack[nstack]
34 return value
35 end function
36
37 subroutine push(value)
38 # push the number in the variable value onto the

stack
39 # make the stack larger if it is full
40 if nstack = stack[?] then redim stack(stack[?] + 5)
41 stack[nstack] = value
42 nstack = nstack + 1
43 end subroutine

Program 116: Stack

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 277

5
4
3
2
1

Sample Output 116: Stack

global variable
global variable, variable...

Global tells BASIC-256 that these variables can be seen by the
entire program (both inside and outside the
functions/subroutines). Using global variables is typically not
encouraged, but when there is the need to share several values or
arrays it may be appropriate.

Queue:

The queue (pronounced like the letter Q) is another very common data
structure. The queue, in its simplest form, is like the lunch line at school. The
first one in the line is the first one to get to eat. Illustration 32 shows a block
diagram of a queue.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 278

The terms enqueue (pronounced in-q) and dequeue (pronounced dee-q) are
the names we use to describe adding a new item to the end of the line (tail)
or removing an item from the front of the line (head). Sometimes this is
described as a "first-in, first-out" or FIFO. The example in Program 117 uses
an array and two pointers that keep track of the head of the line and the tail
of the line.

1 # queue.kbs
2 # implementing a queue using an array
3
4 global queuesize, queue, queuetail, queuehead,

inqueue
5
6 call createqueue(5)
7
8 call enqueue(1)
9 call enqueue(2)

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 32: What is a Queue

ItemItem

Enqueue
(Add One)

Dequeue
(Take One)

Item

Item

Item Item

Chapter 19: Stacks, Queues, Lists, and Sorting Page 279

10
11 print dequeue()
12 print
13
14 call enqueue(3)
15 call enqueue(4)
16
17 print dequeue()
18 print dequeue()
19 print
20
21 call enqueue(5)
22 call enqueue(6)
23 call enqueue(7)
24
25 # empty everybody from the queue
26 while inqueue > 0
27 print dequeue()
28 end while
29
30 end
31
32 subroutine createqueue(z)
33 # maximum number of entries in the queue at any

one time
34 queuesize = z
35 # array to hold queue with initial size
36 dim queue(z)
37 # location in queue of next new entry
38 queuetail = 0
39 # location in queue of next entry to be returned

(served)
40 queuehead = 0
41 # number of entries in queue
42 inqueue = 0
43 end subroutine
44
45 function dequeue()
46 if inqueue = 0 then

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 280

47 print "queue is empty"
48 value = -1
49 else
50 value = queue[queuehead]
51 inqueue--
52 queuehead++
53 if queuehead = queuesize then queuehead = 0
54 end if
55 return value
56 end function
57
58 subroutine enqueue(value)
59 if inqueue = queuesize then
60 print "queue is full"
61 else
62 queue[queuetail] = value
63 inqueue++
64 queuetail++
65 if queuetail = queuesize then queuetail = 0
66 end if
67 end subroutine

Program 117: Queue
1

2
3

4
5
6
7

Sample Output 117: Queue

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 281

Linked List:

In most books the discussion of this material starts with the linked list.
Because BASIC-256 handles memory differently than many other languages
this discussion was saved after introducing stacks and queues.

A linked list is a sequence of nodes that contains data and a pointer or index
to the next node in the list. In addition to the nodes with their information
we also need a pointer to the first node. We call the first node the "Head".
Take a look at Illustration 33 and you will see how each node points to
another.

An advantage to the linked list, over an array, is the ease of inserting or
deleting a node. To delete a node all you need to do is change the pointer on
the previous node (Illustration 34) and release the discarded node so that it
may be reused.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 33: Linked List

Data Data Data

Pointer
to the
Head

Head Tail

Chapter 19: Stacks, Queues, Lists, and Sorting Page 282

Inserting a new node is also as simple as creating the new node, linking the
new node to the next node, and linking the previous node to the first node.
Illustration 35 Shows inserting a new node into the second position.

Linked lists are commonly thought of as the simplest data structures. In the
BASIC language we can't allocate memory like in most languages so we will
simulate this behavior using arrays. In Program 118 we use the data array to
store the text in the list, the nextitem array to contain the index to the next
node, and the freeitem array to contain a stack of free (unused) array
indexes.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 34: Deleting an Item from a Linked List

Data Data Data

Pointer
to the
Head

Head Tail

X

Illustration 35: Inserting an Item into a Linked List

Data Data Data

Pointer
to the
Head

Head Tail

Data

Chapter 19: Stacks, Queues, Lists, and Sorting Page 283

1 # linkedlist.kbs
2
3 # create a linked list using arrays
4
5 # data is an array coitaining the data strings in the

list
6 # nextitem is an array with pointers to the next data

item
7 # if nextitem is -2 it is free or -1 it is the end
8
9 global head, data, nextitem
10 call initialize(6)
11
12 # list of 3 people
13 call append("Bob")
14 call append("Sue")
15 call append("Guido")
16 call displaylist()
17 call displayarrays()
18 call wait()
19
20 print "delete person 2"
21 call delete(2)
22 call displaylist()
23 call displayarrays()
24 call wait()
25
26 print "insert Mary into the front of the list (#1)"
27 call insert("Mary",1)
28 call displaylist()
29 call displayarrays()
30 call wait()
31
32 print "insert John at position 2"
33 call insert("John",2)
34 call displaylist()
35 call displayarrays()
36 call wait()
37

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 284

38 print "delete person 1"
39 call delete(1)
40 call displaylist()
41 call displayarrays()
42 call wait()
43
44 end
45
46 subroutine wait()
47 input "press enter to continue> ",foo
48 print
49 end subroutine
50
51 subroutine initialize(n)
52 head = -1 # start of list (-1 pointer to

nowhere)
53 dim data(n)
54 dim nextitem(n)
55 # initialize items as free
56 for t = 0 to data[?]-1
57 call freeitem(t)
58 next t
59 end subroutine
60
61 subroutine freeitem(i)
62 # free element at array index i
63 data[i] = ""
64 nextitem[i] = -2
65 end subroutine
66
67 function findfree()
68 # find a free item (an item pointing to -2)
69 for t = 0 to data[?]-1
70 if nextitem[t] = -2 then return t
71 next t
72 print 'no free elements to allocate'
73 end
74 end function
75

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 285

76 function createitem(text)
77 # create a new item on the list
78 # and return index to new location
79 i = findfree()
80 data[i] = text
81 nextitem[i] = -1
82 return i
83 end function
84
85 subroutine displaylist()
86 # showlist by following the linked list
87 print "list..."
88 k = 0
89 i = head
90 do
91 k = k + 1
92 print k + " ";
93 print data[i]
94 i = nextitem[i]
95 until i = -1
96 end subroutine
97
98 subroutine displayarrays()
99 # show data actually stored and how
100 print "arrays..."
101 for i = 0 to data[?]-1
102 print i + " " + data[i] + " >" + nextitem[i] ;
103 if head = i then print " <<head";
104 print
105 next i
106 end subroutine
107
108 subroutine insert(text, n)
109 # insert text at position n
110 index = createitem(text)
111 if n = 1 then
112 nextitem[index] = head
113 head = index
114 else

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 286

115 k = 2
116 i = head
117 while i <> -1 and k <> n
118 k = k + 1
119 i = nextitem[i]
120 end while
121 if i <> -1 then
122 nextitem[index] = nextitem[i]
123 nextitem[i] = index
124 else
125 print "can't insert beyond end of list"
126 end if
127 end if
128 end subroutine
129
130 subroutine delete(n)
131 # delete element n from linked list
132 if n = 1 then
133 # delete head - make second element the new

head
134 index = head
135 head = nextitem[index]
136 call freeitem(index)
137 else
138 k = 2
139 i = head
140 while i <> -1 and k <> n
141 k = k + 1
142 i = nextitem[i]
143 end while
144 if i <> -1 then
145 index = nextitem[i]
146 nextitem[i] = nextitem[nextitem[i]]
147 call freeitem(index)
148 else
149 print "can't delete beyond end of list"
150 end if
151 end if
152 end subroutine

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 287

153
154 subroutine append(text)
155 # append text to end of linked list
156 index = createitem(text)
157 if head = -1 then
158 # no head yet - make item the head
159 head = index
160 else
161 # move to the end of the list and add new item
162 i = head
163 while nextitem[i] <> -1
164 i = nextitem[i]
165 end while
166 nextitem[i] = index
167 endif
168 end subroutine

Program 118: Linked List

Re-write Program 118 to implement a stack and a queue using a
linked list.

Slow and Inefficient Sort - Bubble Sort:

The "Bubble Sort" is probably the worst algorithm ever devised to sort a list
of values. It is very slow and inefficient except for small sets of items. This is
a classic example of a bad algorithm.

The only real positive thing that can be said about this algorithm is that it is
simple to explain and to implement. Illustration 36 shows a flow-chart of the
algorithm. The bubble sort goes through the array over and over again

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 288

swapping the order of adjacent items until the sort is complete,

1 # bubblesortf.kbs
2 # implementing a simple sort
3
4 # a bubble sort is one of the SLOWEST algorithms

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 36: Bubble Sort - Flowchart

Start

set sorted flag to true

have we compared all
elements?

i = length(d) - 2

is the next element
less than the current?

d[i+1] > d[i]

move to next element
i = i+1

swap elements
t = d[i]

d[i] = d[i+1]
d[i+1] = t

and set sorted flag
to false

is array
sorted?

Finish

yes
no

yes

start with first two elements of array
i = 0

no

yesno

Chapter 19: Stacks, Queues, Lists, and Sorting Page 289

5 # for sorting but it is the easiest to implement
6 # and understand.
7 #
8 # The algorithm for a bubble sort is
9 # 1. Go through the array swaping adjacent values
10 # so that lower value comes first.
11 # 2. Do step 1 over and over until there have
12 # been no swaps (the array is sorted)
13 #
14
15 dim d(20)
16
17 # fill array with unsorted numbers
18 for i = 0 to d[?]-1
19 d[i] = int(rand * 1000)
20 next i
21
22 print "*** Un-Sorted ***"
23
24 call displayarray(ref(d))
25 call bubblesort(ref(d))
26
27 print "*** Sorted ***"
28 call displayarray(ref(d))
29 end
30
31 subroutine displayarray(ref(array))
32 # print out the array's values
33 for i = 0 to array[?]-1
34 print array[i] + " ";
35 next i
36 print
37 end subroutine
38
39 subroutine bubblesort(ref(array))
40 do
41 sorted = true
42 for i = 0 to array[?] - 2
43 if array[i] > array[i+1] then

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 290

44 sorted = false
45 temp = array[i+1]
46 array[i+1] = array[i]
47 array[i] = temp
48 end if
49 next i
50 until sorted
51 end subroutine

Program 119: Bubble Sort

*** Un-Sorted ***
878 95 746 345 750 232 355 472 649 678 758 424
653 698 482 154 91 69 895 414
*** Sorted ***
69 91 95 154 232 345 355 414 424 472 482 649
653 678 698 746 750 758 878 895

Sample Output 119: Bubble Sort

Better Sort – Insertion Sort:

The insertion sort is another algorithm for sorting a list of items. It is usually
faster than the bubble sort, but in the worst case case could take as long.

The insertion sort gets it's name from how it works. The sort goes through
the elements of the array (index = 1 to length -1) and inserts the value in the
correct location in the previous array elements. Illustration 37 shows a step-
by-step example.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 291

1 # insertionsort.kbs
2 # implementing an efficient sort
3
4 # The insertion sort loops through the items
5 # starting at the second element.
6
7 # takes current element and inserts it
8 # in the the correct sorted place in
9 # the previously sorted elements
10
11 # moving from backward from the current
12 # location and sliding elements with a

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 37: Insertion Sort - Step-by-step

2 7 1 3 5 4 6

Original Array

2

7

1 3 5 4 6

Start with second element and
insert it where it goes in sorted part
(shift if needed to make room)

unsorted

2 7

1

3 5 4 6

Shift the elements in the sorted part and
insert the next element where it goes

2 71

3

5 4 6

2 71 3

5

4 6

2 71 3 5

4

6

a

ab

c

a

a

a

b

b

b

c

2 71 3 54

6

a

b

2 71 3 54 6

Sorted Array

unsorted

unsorted

unsorted

unsorted

unsorted

Keep shifting and inserting each element
until you have gone through all of the
unsorted items in the array

Chapter 19: Stacks, Queues, Lists, and Sorting Page 292

13 # larger value forward to make room for
14 # the current value in the correct
15 # place (in the partially sorted array)
16
17 dim d(20)
18
19 # fill array with unsorted numbers
20 for i = 0 to d[?]-1
21 d[i] = int(rand * 1000)
22 next i
23
24 print "*** Un-Sorted ***"
25 call displayarray(ref(d))
26
27 call insertionsort(ref(d))
28
29 print "*** Sorted ***"
30 call displayarray(ref(d))
31 end
32
33 subroutine displayarray(ref(a))
34 # print out the array's values
35 for i = 0 to a[?]-1
36 print a[i] + " ";
37 next i
38 print
39 end subroutine
40
41 subroutine insertionsort(ref(a))
42 for i = 1 to a[?] - 1
43 currentvalue = a[i]
44 j = i - 1
45 done = false
46 do
47 if a[j] > currentvalue then
48 a[j+1] = a[j]
49 j = j - 1
50 if j < 0 then done = true
51 else

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 293

52 done = true
53 endif
54 until done
55 a[j+1] = currentvalue
56 next i
57 end subroutine

Program 120: Insertion Sort

*** Un-Sorted ***
913 401 178 844 574 289 583 806 332 835 439 52
140 802 365 972 898 737 297 65
*** Sorted ***
52 65 140 178 289 297 332 365 401 439 574 583
737 802 806 835 844 898 913 972

Sample Output 120: Insertion Sort

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 19: Stacks, Queues, Lists, and Sorting Page 294

Exercises:

k f i f o e q i q h m t o
n o f i l u x q q y e r b
i h p v e o d t q y u o d
l m p u f d s r c t e s e
v o e k x v m o i s u n u
p g f c i l e s a i q o e
q l f a u h m e l l n i u
v o i t q s o l l i e t q
i b c s z u r b o d t r e
z a i v e p y b c s z e d
d l e y d j h u a r o s p
z y n g o v c b t y l n q
m x t s n y i t e i q i b

allocate, bubblesort, dequeue, efficient, enqueue, fifo, global,
insertionsort, lifo, link, list, memory, node, pop, push, queue,
stack

1. Rewrite the “Bubble Sort” function to sort strings, not numbers.
Add a second true/false argument to make the sort case-
sensitive/insensitive.

2. Implement the “Insertion Sort” using the linked-list functions so
that items are moved logically and not physically moved.

3. Develop a function to do the “Merge Sort”
(http://en.wikipedia.org/wiki/Merge_sort) on an array of numbers.
Create arrays of random numbers of varying lengths ans sotrt
them using the “Bubble Sort”, the “Insertion Sort”, and your new
“Merge Sort”. Which is the slowest? Fastest?

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

http://en.wikipedia.org/wiki/Merge_sort

