
Chapter 20 – Runtime Error Trapping Page 295

Chapter 20 – Runtime Error Trapping

As you have worked through the examples and created your own programs
you have seen errors that happen while the program is running. These errors
are called "runtime errors". BASIC-256 includes a group of special commands
that allow your program to recover from or handle these errors.

You may already have seen programs that throw or display errors when they
are running. They often occur when an invalid mathematical operation
happens or when an unassigned variable is used. In Program 121 you see a
program that works most of the time but will error and quit running if the
denominator is zero.

1 # divider.kbs
2 # simple division
3
4 print "divide two numbers"
5 while true
6 input "numerator?", n
7 input "denominator?", d
8 q = n/d
9 print "quotient is " + q
10 end while

Program 121: Simple Division Program That May Error

divide two numbers
numerator?6
denominator?9
quotient is 0.6666667
numerator?5
denominator?2
quotient is 2.5
numerator?9

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 296

denominator?0
ERROR on line 8: Division by zero.

Sample Output 121: Simple Division Program That May Error

Try a Statement and Catch an Error:

The try/catch/end try block is structured so that if a trappable runtime
error occurs in the code between the try and the catch, the code
immediately following the catch will be executed. The following example
shows the simple division program now catching the division by zero error.

1 # trycatch.kbs
2 # simple try catch
3
4 print "divide two numbers"
5 while true
6 input "numerator?", n
7 input "denominator?", d
8 try
9 q = n/d
10 print "quotient is " + q
11 catch
12 print "I can't divide " + d + " into " + n
13 end try
14 end while

Program 122: Simple Division Program That Catches Error

divide two numbers
numerator?5
denominator?6
quotient is 0.8333333
numerator?99
denominator?0
I can't divide 0 into 99
numerator?4

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 297

denominator?3
quotient is 1.3333333
numerator?

Sample Output 122: Simple Division Program That Catches Error

try
 statement(s) to try
catch
 statement(s) to execute if an error occurs
end try

The try/catch/end try ...

Trapping errors, when you do not mean too, can cause problems and mask
other problems with your programs. Error trapping should only be used when
needed and disabled when not.

Finding Out Which Error:

Sometimes just knowing that an error happened is not enough. There are
functions that will return the error number (lasterror), the line where the
error happened in the program (lasterrorline), a text message describing
the error (lasterrormessage), and extra command specific error messages
(lasterrorextra).

1 # trap.kbs
2 # error trapping with reporting
3
4 try
5 print "z = " + z

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 298

6 catch
7 print "Caught Error"
8 print " Error = " + lasterror
9 print " On Line = " + lasterrorline
10 print " Message = " + lasterrormessage
11 end try
12 print "Still running after error"

Program 123: Try/Catch - With Messages

Caught Error
 Error = 12
 On Line = 4
 Message = Unknown variable z
Still running after error

Sample Output 123: Try/Catch - With Messages

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 299

lasterror or lasterror()
lasterrorline or lasterrorline()
lasterrormessage or lasterrormessage()
lasterrorextra or lasterrorextra()

The four "last error" functions will return information about the
last trapped error. These values will remain unchanged until
another error is encountered.

lasterror Returns the number of the last trapped
error. If no errors have been trapped this
function will return a zero. See Appendix
G: Errors and Warnings for a complete list
of trappable errors.

lasterrorline Returns the line number, of the program,
where the last error was trapped.

lasterrormessage Returns a string describing the last error.

lasterrorextra Returns a string with additional error
information. For most errors this function
will not return any information.

Type Conversion Errors

BASIC-256 by default will return a zero when it is unable to convert a string
to a number. You may have seen this previously when using the
inputinteger and inputfloat statements. This will also happen when the
int() and float() functions convert a string to a number.

You may optionally tell BASIC-256 to display a trappable warning or throw an
error that stops execution of your program. You can change this setting in
the “Preferences” dialog, on the User tab.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 300

1 # inputnumber.kbs
2
3 input "enter a number> ",a
4 print a

Program 124: Type Conversion Error

Program run with the errors “Ignored”.

enter a number> foo
0

Sample Output 124: Type Conversion Error - Ignored (Deafult)

Program run with the “Warning” enabled. Notice that the program continues
running but displays a message. The try/catch/end try statements will
catch the warning so that you may display a custom message or do special
proccessing.

enter a number> sdfsdf

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 38: Preferences - Type Conversion Ignore/Warn/Error

Chapter 20 – Runtime Error Trapping Page 301

WARNING on line 3: Unable to convert string to
number, zero used.
0

Sample Output 124: Type Conversion Error - Warning

This third example had the property set to “Error”. When an invalid type
conversion happens an error is displayed and program execution stops. This
error is trappable with the try/catch/end try statements.

enter a number> abcd
ERROR on line 3: Unable to convert string to
number.

Sample Output 124: Type Conversion Error - Error

Creating An Error Trapping Routine:

There is a second way to trap run-time errors, by using an error trapping
subroutine. When this type of error trapping is turned on, with the onerror
statement, the program will call a specified subroutine when an error occurs.
When the error trap returns the program will automatically continue with the
next line in the program.

If we look at Program 125 we will see that the program calls the subroutine
when it tries to read the value of z (an undefined variable). If we try to run
the same program with line one commented out or removed the program will
terminate when the error happens.

1 # simpletrap.kbs
2 # simple error trapping
3
4 onerror trap
5
6 print "z = " + z

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 302

7 print "Still running after error"
8 end
9
10 subroutine trap()
11 print "I trapped an error."
12 end subroutine

Program 125: Simple Runtime Error Trap

I trapped an error.
z = 0
Still running after error

Sample Output 125: Simple Runtime Error Trap

onerror label

Create an error trap that will automatically jump to the subroutine
at the specified label when an error occurs.

You may use the lasterror, lasterrorline, lasterrormessage, and
lasterrorextra functions within your error trap subroutine to display any
messages or do any processing you wish to do. Additionally you may not
define an onerror trap inside a try/catch.

Turning Off Error Trapping Routine:

Sometimes in a program we will want to trap errors during part of the
program and not trap other errors. The offerror statement turns error
trapping off. This causes all errors encountered to stop the program.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 303

1 # trapoff.kbs
2 # error trapping with reporting
3
4 onerror errortrap
5 print "z = " + z
6 print "Still running after first error"
7
8 offerror
9 print "z = " + z
10 print "Still running after second error"
11 end
12
13 subroutine errortrap()
14 print "Error Trap - Activated"
15 end subroutine

Program 126: Turning Off the Trap

Error Trap - Activated
z = 0
Still running after first error
ERROR on line 6: Unknown variable

Sample Output 126: Turning Off the Trap

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 304

Exercises:

e u q r l w f e p j x s p w n c
p g u b i r r h f j w w w o c p
b l a s t e r r o r e x t r a p
q e e s v w j l p g a m w l o q
t a n n s r q o i i t m r a n o
r f x i d e o u c a t c h t e y
y h z r l t m r f k o s k v r i
q o i b m r r r r s i e f b r f
x l f x o z o y o e l b b i o a
y k m f z o r r q r t s k e r a
z a h l e i r y r p r s f g y m
i l i l n r e j f e p e a n r l
a q c m t q r k o g t l t l u u
r e u k z b b o u f l s g s t j
m s u h l a r x r m v w a q a l
u b z r l h a l k p a r t l n l

catch, endtry, error, lasterror, lasterrorextra, lasterrorline,
lasterrormessage, offerror, onerror, trap, try

1. Set the “runtime handling of bad type conversion” “Preference”
to “warn” or “Error” and write a simple program that asks the user
to enter a number. If the user enters something that is not a
number, trap the warning/error and ask again.

enter a number> gdf2345
bad entry. try again.
enter a number> fdg545
bad entry. try again.
enter a number> 43fdgdf
bad entry. try again.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 20 – Runtime Error Trapping Page 305

enter a number> 22
You entered 22

2. Take the logic you just developed in Problem 1 and create a
function that takes one argument, the prompt message,
repeatedly asks the user for a number until they enter one, and
returns the user's numeric entry.

3. Write a program that causes many errors to occur, trap and
them. Be sure to check out Appendix G: Errors and Warnings for a
complete list

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

