
Chapter 21: Database Programming Page 306

Chapter 21: Database Programming

This chapter will show how BASIC-256 can connect to a simple relational
database and use it to store and retrieve useful information.

What is a Database:

A database is simply an organized collection of numbers, string, and other
types of information. The most common type of database is the "Relational
Database". Relational Databases are made up of four major parts: tables,
rows, columns, and relationships (see Table 9).

Table A table consists of a predefined number or columns any
any number of rows with information about a specific
object or subject. Also known as a relation.

Row Also called a tuple.

Column This can also be referred to as an attribute.

Relationship A reference of the key of one table as a column of
another table. This creates a connection between tables.

Table 9: Major Components of a Relational Database

The SQL Language:

Most relational databases, today, use a language called SQL to actually
extract and manipulate data. SQL is actually an acronym for Structured Query
Language. The original SQL language was developed by IBM in the 1970s
and has become the primary language used by relational databases.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 307

SQL is a very powerful language and has been implemented by dozens of
software companies, over the years. Because of this complexity there are
many different dialects of SQL in use. BASIC-256 uses the SQLite database
engine. Please see the SQLite web-page at http://www.sqlite.org for more
information about the dialect of SQL shown in these examples.

Creating and Adding Data to a Database:

The SQLite library does not require the installation of a database sever or the
setting up of a complex system. The database and all of its parts are stored
in a simple file on your computer. This file can even be copied to another
computer and used, without problem.

The first program (Program 127: Create a Database) creates a new sample
database file and tables. The tables are represented by the Entity
Relationship Diagram (ERD) as shown in Illustration 39.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 39: Entity Relationship Diagram of Chapter Database

owner

owner_id integer
ownernam e text
phonenum ber text

pet

pet_id integer
owner_id integer
petnam e text
type text

http://www.sqlite.org/

Chapter 21: Database Programming Page 308

1 # dbcreate.kbs - create the pets database and tables
2
3 # delete old database and create a database with two

tables
4 file = "pets.sqlite3"
5 if exists(file) then kill(file)
6 dbopen file
7
8 stmt = "CREATE TABLE owner (owner_id INTEGER,

ownername TEXT, phonenumber TEXT, PRIMARY KEY
(owner_id));"

9 call executeSQL(stmt)
10
11 stmt = "CREATE TABLE pet (pet_id INTEGER, owner_id

INTEGER, petname TEXT, type TEXT, PRIMARY KEY
(pet_id), FOREIGN KEY (owner_id) REFERENCES owner
(owner_id));"

12 call executeSQL(stmt)
13
14 # wrap everything up
15 dbclose
16 print file + " created."
17 end
18
19 subroutine executeSQL(stmt)
20 print stmt
21 try
22 dbexecute stmt
23 catch
24 print "Caught Error"
25 print " Error = " + lasterror
26 print " On Line = " + lasterrorline
27 print " Message = " + lasterrormessage
28 endtry
29 end subroutine

Program 127: Create a Database

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 309

CREATE TABLE owner (owner_id INTEGER, ownername
TEXT, phonenumber TEXT, PRIMARY KEY
(owner_id));
CREATE TABLE pet (pet_id INTEGER, owner_id
INTEGER, petname TEXT, type TEXT, PRIMARY KEY
(pet_id), FOREIGN KEY (owner_id) REFERENCES
owner (owner_id));
pets.sqlite3 created.

Sample Output 127: Create a Database

So far you have seen three new database statements: dbopen – will open a
database file and create it if it does not exist, dbexecute – will execute an
SQL statement on the open database, and dbclose – closes the open
database file.

dbopen filename

Open an SQLite database file. If the database does not exist then
create a new empty database file.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 310

dbexecute sqlstatement

Perform the SQL statement on the currently open SQLite database
file. No value will be returned but a trappable runtime error will
occur if there were any problems executing the statement on the
database.

dbclose

Close the currently open SQLite database file. This statement
insures that all data is written out to the database file.

These same three statements can also be used to execute other SQL
statements. The INSERT INTO statement (Program 128) adds new rows of
data to the tables and the UPDATE statement (Program 129) will change an
existing row's information.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 311

When you are building a SQL statement that may contain
informtion typed in by the user, you must be very careful and
handle quotation marks that they might type in. Malicious users
may try to do something called an SQL-Injection where they will
embed a harmful SQL statement into what they have entered into
the program. Data may be lost or compromised if care is not
taken.

The following examples use a function called "quote" that will
quote a string containing quotation marks correctly and should
eliminate this risk for simple programs.

The "quote" function will place single quotation marks around a string and
return the string with the quotes. If a string contains single quotations within
it, they will be doubled and handled correctly by SQLite.

1 # quote.kbs – quote a string for SQLite
2 # SAVE IT AS quote.kbs
3 #
4 # wrap a string in single quotes (for a sql

statement)
5 # if it contains a single quote double it
6 function quote(a)
7 return "'" + replace(a,"'","''") + "'"
8 end function

1 # dbinsert.kbs - add rows to the database
2
3 include "quote.kbs"
4
5 file = "pets.sqlite3"
6 dbopen file
7
8 call addowner(1, "Jim", "555-3434")

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 312

9 call addpet(1, 1, "Spot", "Cat")
10 call addpet(2, 1, "Fred", "Cat")
11 call addpet(3, 1, "Elvis", "Cat")
12
13 call addowner(2, "Sue", "555-8764")
14 call addpet(4, 2, "Alfred", "Dog")
15 call addpet(5, 2, "Fido", "Cat")
16
17 call addowner(3, "Amy", "555-4321")
18 call addpet(6, 3, "Bones", "Dog")
19
20 call addowner(4, "Dee", "555-9659")
21 call addpet(7, 4, "Sam", "Goat")
22
23 # wrap everything up
24 dbclose
25 end
26
27 subroutine addowner(owner_id, ownername, phonenumber)
28 stmt = "INSERT INTO owner (owner_id, ownername,

phonenumber) VALUES (" + owner_id + "," +
quote(ownername) + "," + quote(phonenumber) + ");"

29 print stmt
30 try
31 dbexecute stmt
32 catch
33 print "Unbale to add owner " + owner_id + "

" + lasterrorextra
34 end try
35 end subroutine
36
37 subroutine addpet(pet_id, owner_id, petname, type)
38 stmt = "INSERT INTO pet (pet_id, owner_id,

petname, type) VALUES (" + pet_id + "," + owner_id +
"," + quote(petname) + "," + quote(type) + ");"

39 print stmt
40 try
41 dbexecute stmt
42 catch

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 313

43 print "Unbale to add pet " + pet_id + " " +
lasterrorextra

44 end try
45 endsubroutine

Program 128: Insert Rows into Database

INSERT INTO owner (owner_id, ownername,
phonenumber) VALUES (1,'Jim','555-3434');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (1,1,'Spot','Cat');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (2,1,'Fred','Cat');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (3,1,'Elvis','Cat');
INSERT INTO owner (owner_id, ownername,
phonenumber) VALUES (2,'Sue','555-8764');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (4,2,'Alfred','Dog');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (5,2,'Fido','Cat');
INSERT INTO owner (owner_id, ownername,
phonenumber) VALUES (3,'Amy','555-4321');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (6,3,'Bones','Dog');
INSERT INTO owner (owner_id, ownername,
phonenumber) VALUES (4,'Dee','555-9659');
INSERT INTO pet (pet_id, owner_id, petname,
type) VALUES (7,4,'Sam','Goat');

Sample Output 128: Insert Rows into Database

1 # dbupdate.kbs - update a database row
2
3 include "quote.kbs"
4
5 dbopen "pets.sqlite3"

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 314

6 s$ = "UPDATE owner SET phonenumber = " + quote("555-
5555") + " where owner_id = 1;"

7 print s$
8 dbexecute s$
9 dbclose

Program 129: Update Row in a Database

UPDATE owner SET phonenumber = '555-5555' where
owner_id = 1;

Sample Output 129: Update Row in a Database

Retrieving Information from a Database:

So far we have seen how to open, close, and execute a SQL statement that
does not return any values. A database would be pretty useless if we could
not get information out of it.

The SELECT statement, in the SQL language, allows us to retrieve the desired
data. After a SELECT is executed a "record set" is created that contains the
rows and columns of data that was extracted from the database. Program
130 shows three different SELECT statements and how the data is read into
your BASIC-256 program.

1 # showpetsdb.kbs
2 # display data from the pets database
3
4 dbopen "pets.sqlite3"
5
6 # show owners and their phone numbers
7 print "Owners and Phone Numbers"
8 dbopenset "SELECT ownername, phonenumber FROM owner

ORDER BY ownername;"
9 while dbrow()

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 315

10 print dbstring(0) + " " + dbstring(1)
11 end while
12 dbcloseset
13
14 print
15
16 # show owners and their pets
17 print "Owners with Pets"
18 dbopenset "SELECT owner.ownername, pet.pet_id,

pet.petname, pet.type FROM owner JOIN pet ON
pet.owner_id = owner.owner_id ORDER BY ownername,
petname;"

19 while dbrow()
20 print dbstring(0) + " " + dbint(1) + " " +

dbstring(2) + " " + dbstring(3)
21 end while
22 dbcloseset
23
24 print
25
26 # show average number of pets
27 print "Average Number of Pets"
28 dbopenset "SELECT AVG(c) FROM (SELECT COUNT(*) AS c

FROM owner JOIN pet ON pet.owner_id = owner.owner_id
GROUP BY owner.owner_id) AS numpets;"

29 while dbrow()
30 print dbfloat(0)
31 end while
32 dbcloseset
33
34 # wrap everything up
35 dbclose

Program 130: Selecting Sets of Data from a Database

Owners and Phone Numbers
Amy 555-9932
Dee 555-4433

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 316

Jim 555-5555
Sue 555-8764

Owners with Pets
Amy 6 Bones Dog
Dee 7 Sam Goat
Jim 3 Elvis Cat
Jim 2 Fred Cat
Jim 1 Spot Cat
Sue 4 Alfred Cat
Sue 5 Fido Dog

Average Number of Pets
1.75

Sample Output 130: Selecting Sets of Data from a Database

dbopenset sqlstatement

Execute a SELECT statement on the database and create a "record
set" to allow the program to read in the result. The "record set"
may contain 0 or more rows as extracted by the SELECT.

dbrow or dbrow ()

Function to advance the result of the last dbopenset to the next
row. Returns false if we are at the end of the selected data.

You need to advance to the first row, using dbrow, after a
dbopenset statement before you can read any data.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 317

dbint (column)
dbfloat (column)
dbstring (column)

These functions will return data from the current row of the record
set. You must know the zero based numeric column number of
the desired data.

dbint Return the cell data as an integer.

dbfloat Return the cell data as a floating-point
number.

dbstring Return the cell data as a string.

dbcloseset

Close and discard the results of the last dbopenset statement.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 318

The big program this chapter creates a single program that
creates, maintains, and lists phone numbers stored in a database
file.

Pay special attention to the quote function used in creating the
SQL statements. It wraps all strings in the statements in single
quotes after changing the single quotes in a string to a pair of
them. This doubling of quotes inside quotes is how to insert a
quotation mark in an SQL statement.

1 # rolofile.kbs
2 # a database example to keep track of phone numbers
3
4 include "quote.kbs"
5
6 dbopen "rolofile.sqlite3"
7 call createtables()
8
9 do
10 print
11 print "rolofile - phone numbers"
12 print "1-add person"
13 print "2-list people"
14 print "3-add phone"
15 print "4-list phones"
16 input "0-exit >", choice
17 print
18
19 if choice=1 then call addperson()
20 if choice=2 then call listpeople()
21 if choice=3 then call addphone()
22 if choice=4 then call listphone()
23 until choice = 0
24 dbclose
25 end
26
27 function inputphonetype()

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 319

28 do
29 input "Phone Type (h-home, c-cell, f-fax, w-

work) > ", type
30 until type = "h" or type = "c" or type = "f" or

type = "w"
31 return type
32 end function
33
34 subroutine createtables()
35 # includes the IF NOT EXISTS clause to not error

if the
36 # table already exists
37 dbexecute "CREATE TABLE IF NOT EXISTS person

(person_id TEXT PRIMARY KEY, name TEXT);"
38 dbexecute "CREATE TABLE IF NOT EXISTS phone

(person_id TEXT, phone TEXT, type TEXT, PRIMARY KEY
(person_id, phone));"

39 end subroutine
40
41 subroutine addperson()
42 print "add person"
43 input "person id > ", person_id
44 person_id = upper(person_id)
45 if ispersononfile(person_id) or person_id = ""

then
46 print "person already on file or empty"
47 else
48 inputstring "person name > ", person_name
49 if person_name = "" then
50 print "please enter name"
51 else
52 dbexecute "INSERT INTO person

(person_id, name) VALUES (" + quote(person_id) + ","
+ quote(person_name) + ");"

53 print person_id + " added."
54 end if
55 end if
56 end subroutine
57

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 320

58 subroutine addphone()
59 print "add phone number"
60 input "person id > ", person_id
61 person_id = upper(person_id)
62 if not ispersononfile(person_id) then
63 print "person not on file"
64 else
65 inputstring "phone number > ", phone
66 if phone = "" then
67 print "please enter a phone number"
68 else
69 type = inputphonetype()
70 dbexecute "INSERT INTO phone

(person_id, phone, type) values (" + quote(person_id)
+ "," + quote(phone) + "," + quote(type) + ");"

71 print phone + " added."
72 end if
73 end if
74 end subroutine
75
76 function ispersononfile(person_id)
77 # return true/false whether the person is on the

person table
78 onfile = false
79 dbopenset "select person_id from person where

person_id = " + quote(person_id)
80 if dbrow() then onfile = true
81 dbcloseset
82 return onfile
83 end function
84
85 subroutine listpeople()
86 dbopenset "select person_id, name from person

order by person_id"
87 while dbrow()
88 print dbstring("person_id") + " " +

dbstring("name")
89 end while
90 dbcloseset

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 321

91 end subroutine
92
93 subroutine listphone()
94 input "person id to list (return for all) > ",

person_id
95 person_id = upper(person_id)
96 stmt = "SELECT person.person_id, person.name,

phone.phone, phone.type FROM person LEFT JOIN phone
ON person.person_id = phone.person_id"

97 if person_id <> "" then stmt += " WHERE
person.person_id = " + quote(person_id)

98 stmt += " ORDER BY person.person_id"
99 dbopenset stmt
100 while dbrow()
101 print dbstring("person_id") + " " +

dbstring("name") + " " + dbstring("phone") + " " +
dbstring("type")

102 end while
103 dbcloseset
104 end subroutine

Exercises:

y p z t c e l e s o x x d
e l i b a m l n a x x t b
t q x h o o e t g n e d i
a s t p s t l n e s t f n
e e a e a n i f n t t s t
r q t d s r o e b m a d r
c n p u t e p i n d b m e
i u e s c o s m t c l u s
d q b p b e u o l a e y n
b d u d o l x o l z l f i
r m o e o b s e p c w e m
o x h c r e d t b o b y r
w c g h t y j c r d s d m

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 21: Database Programming Page 322

column, create, dbclose, dbcloseset, dbexecute, dbfloat, dbint,
dbopen, dbopenset, dbrow, dbstring, insert, query, relationship,
row, select, sql, table, update

1. Take the “Big Program” from this chapter and modify it to
create an application to keep track of a student's grades for
several classes. You will need the following menu options to allow
the user to:

• Enter a class code, assignment name, possible points, score
on an assignment and store this information into a
database table.

• Create a way for the student to see all of the grades for a
single class after they enter the class code.

• Create an option to see a list of all classes with total points
possible, total points scored, and percentage of scored vs.
possible.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

