
Chapter 22: Connecting with a Network Page 323

Chapter 22: Connecting with a Network

This chapter discusses how to use the BASIC-256 networking statements.
Networking in BASIC-256 will allow for a simple "socket" connection using
TCP (Transmission Control Protocol). This chapter is not meant to be a full
introduction to TCP/IP socket programming.

Socket Connection:

TCP stream sockets create a connection between two computers or
programs. Packets of information may be sent and received in a bi-directional
(or two way) manner over the connection.

To start a connection we need one computer or program to act as a server
(to wait for the incoming telephone call) and the other to be a client (to make
the telephone call). Illustration 40 shows graphically how a stream
connection is made.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Illustration 40: Socket Communication

ClientServer

1. Server listens for client to connect
2. Client connects to port
3. Bi-directional (2-way) communication
 between client and server.

2.

3.

1.

Chapter 22: Connecting with a Network Page 324

Just like with a telephone call, the person making the call (client) needs to
know the phone number of the person they are calling (server). We call that
number an IP address. BASIC-256 uses IP version 4 addresses that are
usually expressed as four numbers separated by periods (A.B.C.D) where A,
B, C, and D are integer values from 0 to 255.

In addition to having the IP address for the server, the client and server must
also talk to each-other over a port. You can think of the port as a telephone
extension in a large company. A person is assigned an extension (port) to
answer (server) and if you want to talk to that person you (client) call that
extension.

The port number may be between 0 and 65535 but various Internet and
other applications have been reserved ports in the range of 0-1023. It is
recommended that you avoid using these ports.

A Simple Server and Client:

1 # simpleserver.kbs
2 # send a message to the client on port 999
3
4 print "listening to port 9999 on " + netaddress()
5 NetListen 9999
6 NetWrite "The simple server sent this message."
7 NetClose

Program 131: Simple Network Server

1 # simpleclient.kbs
2 # connect to simple server and get the message
3 #
4 input "What is the address of the simple_server?",

addr
5 if addr = "" then addr = "127.0.0.1"
6 #

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 325

7 NetConnect addr, 9999
8 print NetRead
9 NetClose

Program 132: Simple Network Client

listening to port 9999 on xx.xx.xx.xx

Sample Output 131: Simple Network Server

What is the address of the simple_server?
The simple server sent this message.

Sample Output 132: Simple Network Client

netaddress
netaddress ()

Function that returns a string containing the numeric IPv4 network
address for this machine.

netlisten portnumber
netlisten (portnumbrer)
netlisten socketnumber, portnumber
netlisten (socketnumber, portnumber)

Open up a network connection (server) on a specific port address
and wait for another program to connect. If socketnumber is not
specified socket number zero (0) will be used.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 326

netclose
netclose ()
netclose socketnumber
netclose (socketnumber)

Close the specified network connection (socket). If socketnumber
is not specified socket number zero (0) will be closed.

netwrite string
netwrite (string)
netwrite socketnumber, string
netwrite (socketnumber, string)

Send a string to the specified open network connection. If
socketnumber is not specified socket number zero (0) will be
written to.

netconnect servername, portnumber
netconnect (servername, portnumber)
netconnect socketnumber, servername, portnumber
netconnect (socketnumber, servername, portnumber

)

Open a network connection (client) to a server. The IP address or
host name of a server are specified in the servername argument,
and the specific network port number. If socketnumber is not
specified socket number zero (0) will be used for the connection.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 327

netread
netread ()
netread (socketnumber)

Read data from the specified network connection and return it as
a string. This function is blocking (it will wait until data is
received). If socketnumber is not specified socket number zero (0)
will be read from.

Network Chat:

This example adds one new function (netdata) to the networking
statements we have already introduced. Use of this new function will allow
our network clients to process other events, like keystrokes, and then read
network data only when there is data to be read.

The network chat program (Error: Reference source not found) combines the
client and server program into one. If you start the application and it is
unable to connect to a server the error is trapped and the program then
becomes a server. This is one of many possible methods to allow a single
program to fill both roles.

1 # chat.kbs
2 # use port 9999 for simple chat
3
4 input "Chat to address (return for server or local

host)?", addr
5 if addr = "" then addr = "127.0.0.1"
6 #
7 # try to connect to server - if there is not one

become one
8 try
9 NetConnect addr, 9999
10 catch

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 328

11 print "starting server - waiting for chat client"
12 NetListen 9999
13 end try
14 print "connected"
15
16 while true
17 # get key pressed and send it
18 k = key
19 if k <> 0 then
20 call show(k)
21 netwrite string(k)
22 end if
23 # get key from network and show it
24 if NetData() then
25 k = int(NetRead())
26 call show(k)
27 end if
28 pause .01
29 end while
30 end
31
32 subroutine show(keyvalue)
33 if keyvalue=16777220 then
34 print
35 else
36 print chr(keyvalue);
37 end if
38 end subroutine

Program 133: Network Chat

The following is observed when the user on the client types the message "HI
SERVER" and then the user on the server types "HI CLIENT".

Chat to address (return for server or local
host)?
starting server - waiting for chat client

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 329

connected
HI SERVER
HI CLIENT

Sample Output 133.1: Network Chat (Server)

Chat to address (return for server or local
host)?
connected
HI SERVER
HI CLIENT

Sample Output 133.2: Network Chat (Client)

netdata or netdata()
netdata (socketnumbr)

Returns true if there is network data waiting to be read. This
allows for the program to continue operations without waiting for
a network packet to arrive.

The big program this chapter creates a two player networked tank
battle game. Each player is the white tank on their screen and the
other player is the black tank. Use the arrow keys to rotate and
move. Shoot with the space bar.

1 # battle.kbs

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 330

2 # uses port 9998 for server
3
4 spritedim 4
5 call tanksprite(0,white) # me
6 call tanksprite(1,black) # opponent
7 call projectilesprite(2,blue) # my shot
8 call projectilesprite(3,red) # opponent shot
9
10 kspace = 32
11 kleft = 16777234
12 kright = 16777236
13 kup = 16777235
14 kdown = 16777237
15
16 dr = pi / 20 # direction change
17 dxy = 2.5 # move speed
18 shotdxy = 5 # shot move speed
19 port = 9998 # port to communicate on
20
21 print "Tank Battle - You are the white tank."
22 print "Your mission is to shoot and kill the"
23 print "black one. Use arrows to move and"
24 print "space to shoot."
25 print
26
27 input "Are you the server? (y or n)", mode
28 if mode = "y" then
29 print "You are the server. Waiting for a client to

connect."
30 NetListen port
31 else
32 input "Server Address to connect to (return for

local host)?", addr
33 if addr = "" then addr = "127.0.0.1"
34 NetConnect addr, port
35 end if
36
37 # set my default position and send to my opponent
38 x = 100

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 331

39 y = 100
40 r = 0
41 # projectile position direction and visible
42 p = false
43 px = 0
44 py = 0
45 pr = 0
46 call writeposition(x,y,r,p,px,py,pr)
47
48
49 # update the screen
50 color green
51 rect 0, 0, graphwidth, graphheight
52 spriteshow 0
53 spriteshow 1
54 spriteplace 0, x, y, 1, r
55 while true
56 # get key pressed and move tank on the screen
57 k = key
58 if k <> 0 then
59 if k = kup then
60 x = (graphwidth + x + sin(r) * dxy) %

graphwidth
61 y = (graphheight + y - cos(r) * dxy) %

graphheight
62 end if
63 if k = kdown then
64 x = (graphwidth + x - sin(r) * dxy) %

graphwidth
65 y = (graphheight + y + cos(r) * dxy) %

graphheight
66 end if
67 if k = kleft then r = r - dr
68 if k = kright then r = r + dr
69 if k = kspace then
70 pr = r
71 px = x
72 py = y
73 p = true

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 332

74 spriteshow 2
75 end if
76 spriteplace 0, x, y, 1, r
77 call writeposition(x, y, r, p, px, py, pr)
78 if spritecollide(0, 1) then
79 netwrite "F"
80 print "You just ran into the other tank and

you both died. Game Over."
81 end
82 end if
83 end if
84 # move my projectile (if there is one)
85 if p then
86 px = px + sin(pr) * shotdxy
87 py = py - cos(pr) * shotdxy
88 spriteplace 2, px, py, 1, pr
89 if spritecollide(1, 2) then
90 NetWrite "W"
91 print "You killed your opponent. Game over."
92 end
93 end if
94 if px < 0 or px > graphwidth or py < 0 or py >

graphheight then
95 p = false
96 spritehide 2
97 end if
98 call writeposition(x, y, r, p, px, py, pr)
99 end if
100 #
101 # get position from network and
102 # set location variables for the opponent
103 # flip the coordinates as we decode
104 while NetData()
105 position = NetRead()
106 while position <> ""
107 if left(position,1) = "W" then
108 print "You Died. - Game Over"
109 end
110 end if

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 333

111 if left(position,1) = "F" then
112 print "You were hit and you both died. -

Game Over"
113 end
114 end if
115 op_x = graphwidth - unpad(ref(position),

3)
116 op_y = graphheight - unpad(ref(position),

3)
117 op_r = pi + unpad(ref(position), 5)
118 op_p = unpad(ref(position), 1)
119 op_px = graphwidth - unpad(ref(position),

3)
120 op_py = graphheight -

unpad(ref(position), 3)
121 op_pr = pi + unpad(ref(position), 5)
122 # display opponent
123 spriteplace 1, op_x, op_y, 1, op_r
124 if op_p then
125 spriteshow 3
126 spriteplace 3, op_px, op_py, 1, op_pr
127 else
128 spritehide 3
129 end if
130 end while
131 end while
132 #
133 pause .05
134 end while
135
136 subroutine writeposition(x,y,r,p,px,py,pr)
137 position = lpad(int(x), 3) + lpad(int(y),

3) + lpad(r, 5) + lpad(p, 1) + lpad(int(px),
3) + lpad(int(py), 3) + lpad(pr, 5)

138 NetWrite position
139 end subroutine
140
141 function lpad(n, l)
142 # return a number left padded in spaces

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 334

143 s = left(n, l)
144 while length(s) < l
145 s = " " + s
146 end while
147 return s
148 end function
149
150 function unpad(ref(l), l)
151 # return a number at the begining padded in l

spaces
152 # and shorten the string by l that we just pulled

off
153 n = float(left(l, l))
154 if length(l) > l then
155 l = mid(l, l + 1, 99999)
156 else
157 l = ""
158 end if
159 return n
160 end function
161
162 subroutine tanksprite(spritenumber , c)
163 color c
164 spritepoly spritenumber, {0,0, 7,0, 7,7, 14,7,

20,0, 26,7, 33,7, 33,0, 40,0, 40,40, 33,40, 33,33,
7,33, 7,40, 0,40}

165 end subroutine
166
167 subroutine projectilesprite(spritenumber, c)
168 color c
169 spritepoly spritenumber, {3,0, 3,8, 0,8}
170 end subroutine

Program 134: Network Tank Battle

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Chapter 22: Connecting with a Network Page 335

Exercises:

m r d t n s i p n n
j r f d o c k e e e
v v r c l r t g s t
p h k i o s d e o c
k e e w i a r k l o
t n t l e v v c c n
t e t r e t t n t n
n e t r c x g o e e
n e x p o r t m n c
n e t i r w t e n t

client, listen, netclose, netconnect, netlisten, netread, network,
netwrite, port, server, socket, tcp

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

Sample Output 45: Adding Machine - Using Exit While

Chapter 22: Connecting with a Network Page 336

1. Modify Problem 4 from the keyboard control chapter to create a
network client/server 2 player “ping-pong” game.

2. Write a simple server/client rock-paper-scissors game where
two players will compete.

3. Write a complex network chat server that can connect to
several clients at once. You will need a server process to assign
each client a different port on the server for the actual chat traffic.

© 2019 James M. Reneau (CC BY-NC-SA 3.0 US)

