
Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 139
Chapter 12 — String Encoding

Chapter 12 — String Encoding

Introduction

Strings are made up of a collection of bytes (8 binary digits) that represent the characters that the string
contains. In Python 3 string are encoded following the UTF-8 standard, and may contain 1,112,064
different code points (or symbols). This allows Python programs to process strings of all languages,
throughout the world.

Objectives

Upon completion of this chapter's exercises, you should be able to:
• Use the ASCII character set to represent characters as numbers and to convert numbers back to

their ASCII character.
• Define and apply the UNICODE character encoding to extend the ASCII set to represent a

myriad of international characters and symbols.
• Specifically understand the UTF-8 method of representing UNICODE characters.
• Differentiate a byte array from a string and convert one to another,

Prerequisites

This Chapter requires...

ASCII

The American Standard Code for Information Interchange (ASCII) was created in 1963 to standardize
the way string data was to be stored and communicated between computer systems. Before this
standard was widely adopted, there were several encodings adopted by different computer
manufactures.

ASCII uses the first seven bits in a byte to encode 128 different characters, or code points as they can
be generically called. Because ASCII was an American standard, is did not include a method to store
string data from other regions of the world.

Even though ASCII has been generally replaced by the more inclusive encoding of Unicode, it still is
used and is actually a subset of the widely used UTF-8 encoding.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 140
Chapter 12 — String Encoding

An ASCII example

We can easily loop through a string, letter by letter, using a for loop. The Python built in function
ord() returns the integer number representing the ASCII code.

ord(character) Function

The ord() function will return a value representing the UNICODE number for
that character. Because ASCII is a sub-set of UNICODE, this function will return
the ASCII values for ASCII characters.

REF

1| text = 'Python 3'
2| for c in text:
3| a = ord(c) # get ascii code for a character
4| print(c, bin(a), hex(a), a)

P 0b1010000 0x50 80
y 0b1111001 0x79 121
t 0b1110100 0x74 116
h 0b1101000 0x68 104
o 0b1101111 0x6f 111
n 0b1101110 0x6e 110
 0b100000 0x20 32
3 0b110011 0x33 51

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 141
Chapter 12 — String Encoding

BIN 000 001 010 011 100 101 110 111

BIN HEX 0 1 2 3 4 5 6 7

0000 0 NUL DLE SP 0 @ P ` p

0001 1 SOH DC1 ! 1 A Q a q

0010 2 STX DC2 " 2 B R b r

0011 3 ETX DC3 # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f v

0111 7 BEL ETB ' 7 G W g w

1000 8 BS CAN (8 H X h x

1001 9 HT EM) 9 I Y i y

1010 A LF SUB * : J Z j z

1011 B VT ESC + ; K [k {

1100 C FF FS , < L \ l |

1101 D CR GS - = M] m }

1110 E S0 RS . > N ^ n ~

1111 F S1 US / ? O _ o DEL

Table 9: ASCII Character Encoding Table

Unicode

In the late 1980s and early 1990s Xerox, Apple, Microsoft, and others begin working on a new way to
represent characters. The early idea was to widen the existing character set to 16 bits, to allow 65,536
code points. It was originally thought that this would cover the vast majority of characters in modern
languages. This technique was known as UCS-2 but was found to be too large and limiting. This
required creating a better and more flexible method for encoding characters, we call that UTF-8.

The Unicode Consortium is a collection of many of the largest companies in the tech world. Members
include: Apple, Oracle, IBM, Microsoft, Google and others. The Unicode specification is a living
document that is being revised on a regular basis. The Unicode 11.0 specification even defines code
points for 1644 emojis.

UTF-8

UTF-8 was initially specified in 1996, and by 2009 had become the dominant character encoding for

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 142
Chapter 12 — String Encoding

paged on the World Wide Web. Since Python 3.0 was introduced, UTF-8 is how strings are stored in
memory. It can encode over 1.1 million different code points.

UTF-8 Is a variable length coding method that allows for the most common code points to be
represented with one or two bytes, while the least common code points may take up to four bytes to
represent. This variable length encoding is accomplished by setting certain bits in the byte stream
signifying how many bytes long this code is. The ASCII code points in the range of 0-127 (when the
high order bit is set to 0) are the codes that fit on a single byte. This allows ASCII text files to be
compliant with the UTF-8 format.

1| # -*- coding: utf-8 -*-
2| text = 'Πthon is hard work. '😅
3| for c in text:
4| a = ord(c) # get unicode code for a character
5| print(c, bin(a), hex(a), a)

Π 0b1110100000 0x3a0 928
t 0b1110100 0x74 116
h 0b1101000 0x68 104
o 0b1101111 0x6f 111
n 0b1101110 0x6e 110
 0b100000 0x20 32
i 0b1101001 0x69 105
s 0b1110011 0x73 115
 0b100000 0x20 32
h 0b1101000 0x68 104
a 0b1100001 0x61 97
r 0b1110010 0x72 114
d 0b1100100 0x64 100
 0b100000 0x20 32
w 0b1110111 0x77 119
o 0b1101111 0x6f 111
r 0b1110010 0x72 114
k 0b1101011 0x6b 107
. 0b101110 0x2e 46
 0b100000 0x20 32

 0b11111011000000101 0x1f605 128517😅

NOTE: You will notice that the first line of the previous Python program begins with a
comment statement like # -*- coding: utf-8 -*-. This line tells Python and most
Python editors (PyCharm, Spyder and others) to read and process the file as UTF-8 and not as
ASCII. This was required because of the Unicode characters in the text of the program. This
"magic comment" was defined in PEP-263.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.python.org/dev/peps/pep-0263/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 143
Chapter 12 — String Encoding

Bytes (Constants)

In previous chapters we have seen many types of constants (integer, binary numbers, hexadecimal
numbers, floating-point numbers, and strings. There is another called Bytes that represents a sequence
of bytes. Bytes is a collection of raw 8 bit data and is not encoded in any special way.

Constants of the Bytes type may be put in your code by prefixing a string of ASCII characters with the
letter 'b'. The quoted sequence of bytes may only contain ASCII characters, and not the full collection
of Unicode code points. If you need to embed bytes by their hexadecimal values, use the \x## escape
sequence with two hexadecimal characters.

b'a group of ASCII characters!!'
b"another GROuP."
b'mixed\xFF\x10\xd0.'
b'''triple single "quoted" ASCII letters'''
b"""triple double 'quoted' ASCII letters"""

Bytes may also be defined using a string of hexadecimal digits. This becomes useful if we want to
include bytes outside the range from 32-127 in our bytes constant. To do this we can use the
bytes.fromhex() method.

bytes.fromhex(hex_string) Method of the byte class

Because many bytes are non printing, especially the ones less than 32 or greater
than 127, you may represent an array of bytes as a string of hexadecimal values.
Each pair of characters represent a number from 0-255, a byte.

REF

a = bytes.fromhex("FFFEF405099A0")

Converting Strings to Bytes and Bytes to Strings

If a constant string contains only ASCII characters, it can easily be converted to Bytes by prefixing it
with 'b'', as seen above. To convert a UTF-8 or any other type of encoded string we need to use a
second argument on the bytes() or str() that specifies how the string is encoded or how we want
the string encoded.

1| # -*- coding: utf-8 -*-

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 144
Chapter 12 — String Encoding

2| b = bytes("abc XYZ",'UTF_8')😅
3| print(b)
4| c = b'abc \xf0\x9f\x98\x85 XYZ'
5| print(str(c,'UTF_8'))
6| a = b'an ASCII string with Unicode \xE2\x80\x9Cquotes\xE2\x80\

x9D.'
7| print(str(a,"utf_8"))

b'abc \xf0\x9f\x98\x85 XYZ'
abc XYZ😅
an ASCII string with Unicode “quotes”.

A few common encoding are in the table below, but a complete list can be found at
https://docs.python.org/3.7/library/codecs.html#standard-encodings.

Codec Aliases Languages

ascii 646, us-ascii English

cp850 850, IBM850 Western Europe

utf_32 U32, utf32 all languages

utf_16 U16, utf16 all languages

utf_8 U8, UTF, utf8 all languages

Table 10: Common Character Encodings

Converting Bytes to Integers and Integers to Strings

Under the hood, Python stores integers with a variable number of bytes, so that very large or very small
numbers may be represented efficiently. In may programs and systems, integers are stored as a fixed
number of bytes. Python includes a method to convert an Integer into a fixed binary representation and
another to decode the integer from a collection if bytes.

A problem with storage of numbers in this raw format is that there are several different ways the bits
and bytes may be arranged. The two most common arrangements of bytes are known as little-endian
and big-endian encoding. In little-endian encoding the low order byte is placed first in the collection
where in the big-endian encoding the high order byte is placed first. You can read more about
endianness at https://en.wikipedia.org/wiki/Endianness .

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://en.wikipedia.org/wiki/Endianness
https://docs.python.org/3.7/library/codecs.html#standard-encodings
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 145
Chapter 12 — String Encoding

The method to_bytes requires two arguments, The first is the width in bytes and the second is how to
encode the bytes. The second method from_bytes takes a collection of bytes, how it was ordered, and
will return an integer.

1| a = 8853778
2|
3| # converting an integer to a "big-endian" collection of bytes
4| b = a.to_bytes(4, byteorder='big')
5| print(b)
6| print(int.from_bytes(b, byteorder='big'))
7|
8| # converting an integer to a "little-endian" collection of bytes
9| b = a.to_bytes(4, byteorder='little')
10| print(b)
11| print(int.from_bytes(b, byteorder='little'))

b'\x00\x87\x19\x12'
8853778
b'\x12\x19\x87\x00'
8853778

Summary

Goes here

Important Terms

here

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

Example:

4350 is 0001000011111110 in binary and 10FE in hexadecimal.

b"\x10\xfe" is big-endian and
b"\xfe\x10" is little-endian

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 146
Chapter 12 — String Encoding

Exercises

Here

Word Search

References

https://en.wikipedia.org/wiki/UTF-8

https://en.wikipedia.org/wiki/ASCII

https://docs.python.org/3/howto/unicode.html

https://en.wikipedia.org/wiki/Unicode

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://en.wikipedia.org/wiki/Unicode
https://docs.python.org/3/howto/unicode.html
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8
http://creativecommons.org/licenses/by-sa/4.0/

