
Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 147
Chapter 13 — Persistent Data

Chapter 13 — Persistent Data

Introduction

Stand alone programs that do not save and use saved data are interesting, but most programs need to
store and remember them. This chapter will introduce the UNIX DB and the Shelve Libraries to create
stores for data. These are different from files, introduced in a previous chapter, in that

Objectives

Upon completion of this chapter's exercises, you should be able to:
• Blah de blah.
• Baz and Barf.

Prerequisites

This Chapter requires...

The UNIX DB

The UNIX DB module has a confusing name because of its origin, but it is available on virtually all
Python implementations. The UNIX DB (the dbm module) acts very much like a dictionary, except that
key value pairs you set are stored on the hard drive for later.

The actual method and operating system library used to store the data varies between implementations.
On UNIX and LINUX systems the GNU gdbm or the UNIX ndb libraries are used. On Windows
systems a hashed file or "dumb" file is used to store the key value pairs. The files stored on the systems
may not be readable on other systems, but using them to store values is the same.

The dbm module has a limitation that all of the keys and values must be collections of bytes. You may
use strings, but the values when they are returned will be collections of bytes and need to be encoded
back to their original format (if they include Unicode characters); This also means that you will need
to encode/decode numbers into collections of bytes or to strings.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 148
Chapter 13 — Persistent Data

Using dbm

This sample program uses a dbm object to store a value that the user enters. When the user runs the
program again they can either change the value, or retrieve the old value. This program demonstrates
that if a Unicode character outside the range of 0-127 is entered, the result will be returned as a
collection of bytes. Like in file-system IO, it is strongly suggested that you use the with statement to
manage the context of the module.

To use the dbm module, you first must import dbm into your program. This will load the best library
for key value storage you have available to you.

Now all you need to do is "open it". The open method dbm.open() usually requires two values, file
name and mode. The file name may be a simple name or the path to a file and does not need to include
a file extension. The mode may be: 'r' -read only, 'w' -reading and writing, 'c' — create a new
database if it does not exist for reading and writing, and 'n' — always create a new database. The 'r'
mode is default (if you do not specify a mode).

If you are using the dbm module in a with context manager, it will be closed for you automatically
when you leave the suite of code. If you are accessing dbm outside a context manager, you will need to
close your dbm object using the .close() method.

dbm Module

The dbm module will create a persistent key-value storage of byte arrays for your
program to use

REF

dbm.open(file_name, mode) Method of dbm

Open a UNIX database with the file name specified and return an object that can
be used to access it.

Mode Description

“r” Open the database for “read-only” access. This is the default action of
mode is not specified.

“w” Open the database for “write-only”. Use this mode is you are
populating a database with large quantities of data and you are not
going to be reading from it.

“c” Create a database if it does not exist and then open it in read and write

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 149
Chapter 13 — Persistent Data

mode.

“n” Delete the old database create a new one. Open it in read and write
mode.

REF

dbm_object.close() Method of dbm

Closes a dbm database. If a database is not closed, changes may not be
committed to the disk. It is recommended that you use a with context manager,
and allow it to automatically close your database.

REF

1| import dbm
2| key = b'uservalue'
3|
4| a = input("enter a value to save or press enter to see old value

-->")
5|
6| with dbm.open('demodbm', 'c') as d:
7| if not a:
8| value = d.get(key,"NOTHING")
9| print("your value was", value)
10| else:
11| d[key] = a
12| print("your value was saved")

enter a value to save or press enter to see old value -->
your value was NOTHING

enter a value to save or press enter to see old value --
>abcd efgh😅
your value was saved

enter a value to save or press enter to see old value -->
your value was b'abcd \xf0\x9f\x98\x85 efgh'

Using Shelve for Persistent Values

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 150
Chapter 13 — Persistent Data

The shelve library actually combines the pickle library and the dbm library to create an easy way
to store virtually anything. With shelve you do not have to convert the data to a string or a collection
of bytes. The pickle library is insecure and may expose your system to malicious code. It is
recommended that you do not use shelve data files from untrustworthy sources. As with dbm it is
strongly recommended that you execute the .close() method or execute it as a context manager
using the with statement.

shelve Module

The shelve module combines the dbm module with the pickle module to
create a key-value persistent store that will return values of various types, and nor
just byte arrays.

Data files, created by shelve, from unknown sources are not secure and should
not be used.

REF

shelve.open(file_name) Method of shelve

Closes a shelve for reading and writing. Create a new one of it does not exist.

REF

1| iimport shelve
2|
3| # shelve data
4| with shelve.open('demoshelve') as dat:
5| dat['some_int'] = 999
6| dat['a_float'] = 87.654
7| dat['message'] = "hi there"
8| dat['car_collection'] = [["Volvo", "240", 1993],

["Ford","Mustang",1972],["VW","Beetle",1978]]
9|
10| print("sample data was written")

sample data was written

1| import shelve
2|
3| # get data from the shelve
4| with shelve.open('demoshelve') as stuff:

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 151
Chapter 13 — Persistent Data

5| print("an integer ->", stuff['some_int'])
6| print("a float ->", stuff['a_float'])
7| print("a string ->", stuff['message'])
8| print("a list ->", stuff['car_collection'])

an integer -> 999
a float -> 87.654
a string -> hi there
a list -> [['Volvo', '240', 1993], ['Ford', 'Mustang', 1972],
['VW', 'Beetle', 1978]]

NOTE: It is recommended that when accessing values from either a dbm or shelve database
that you trap for errors; check to see if the key exists (using the in operator); or use the
.get(key, default) method with a default value.

Sample Program — Number Guess with History

This sample program plays the classic number guessing game where after each guess you are given a
clue; higher or lower. It uses the shelve module to store how many times the game has been played and
the fewest number of guesses that were made to win. It creates a local file called "numberguess.dat" to
store this persistent information.

1| import random
2| import shelve
3|
4| # save constants into variales
5| DATABASENAME = "numberguess"
6| PLAYED = "played_times"
7| PLAYED_DEFAULT = 0
8| FEWEST = "fewest_guesses"
9| FEWEST_DEFAULT = 100
10|
11| print("number guessing game")
12| with shelve.open(DATABASENAME) as db:
13| played_times = db.get(PLAYED, PLAYED_DEFAULT)
14| fewest_guesses = db.get(FEWEST, FEWEST_DEFAULT)
15|
16| print('this game has been played', played_times, 'times')
17| print("can you beat", fewest_guesses, 'guesses?')
18|
19| #

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 152
Chapter 13 — Persistent Data

20| n = random.randint(1,100)
21| print("i am thinking about a number from 1 to 100.")
22| print("can you guess it?")
23| print("you will get a clue after each guess.")
24| #
25| guesses = 0
26| while True:
27| try:
28| guess = int(input("enter your guess (or -1 to quit)?"))
29| if guess== -1:
30| print('good bye')
31| break
32| if (guess >= 1 and guess <= 100):
33| guesses = guesses + 1
34|
35| if guess == n:
36| print('you got it in', guesses, 'guesses.')
37| # reopen shelve and update
38| with shelve.open(DATABASENAME) as db:
39| db[PLAYED] = db.get(PLAYED, PLAYED_DEFAULT)

+ 1
40| if guesses < db.get(FEWEST, FEWEST_DEFAULT):
41| db[FEWEST] = guesses
42| break
43| elif guess < n:
44| print('you need to guess higher')
45| else:
46| print('you need to guess lower')
47| else:
48| print("your guess should be between 1 and 100")
49| except:
50| print("you need to enter an integer.")
51| print('thanks for playing')

number guessing game
this game has been played 4 times
can you beat 6 guesses?
i am thinking about a number from 1 to 100.
can you guess it?
you will get a clue after each guess.
enter your guess (or -1 to quit)?59
you need to guess higher
enter your guess (or -1 to quit)?77

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 153
Chapter 13 — Persistent Data

you need to guess lower
enter your guess (or -1 to quit)?68
you got it in 3 guesses.
thanks for playing

Summary

Goes here

Important Terms

here

Exercises

Here

Word Search

References

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

