
Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 154
Chapter 14 — Relational Databases using the DB-API 2.0

Chapter 14 — Relational Databases using the DB-API 2.0

Introduction

The Python DB-API 2.0 is a standard way to access databases in your programs. Because of this
common way to access data, only minor implementation specific changes would need to be made to
your Python code if you were to change the underlying database. The details o the specirfications can
be found in document PEP249.

This introductory database access chapter will use the SQLite3 database,. It is built in to most Python
implementations and does not require additional setup. SQLite 3 is a self contained, server-less
database that is perfect for low to medium volume websites, data analysis, and application data storage.

There is a section at the end of this chapter where a few examples using MySQL are shown. The
MySQL database is appropriate for significant multi-user and high volume applications. It required the
setup and management of a database server, that is beyond the context of this introduction.

Objectives

Upon completion of this chapter's exercises, you should be able to:
• Blah de blah.
• Baz and Barf.

Prerequisites

This Chapter requires...

A Few Definitions

Connection — A connection is an object that manages the physical communication with the database. A
program may have several connections to several different databases. A connection also manages
transactions at the database level.

Cursor — A cursor is an object, created from a connection, that manages the results of SQL statements.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.python.org/dev/peps/pep-0249/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 155
Chapter 14 — Relational Databases using the DB-API 2.0

Executing Statements

To execute SQL statements, you must 1) include the database module, 2) open a connection to your
database and 3) create a cursor to contain the statement as it executes.

This example creates a new database file called "myfile.sqlite3", creates a new table to store books, and
inserts a single row into that table. There is a single cursor and execute method on the cursor is called
multiple times. The .rowcount property is printed out and displays a -1 signifying that create was
successful and ones for the inserts to represent that a single row was added.

1| import sqlite3
2|
3| db = sqlite3.connect('myfile.sqlite3')
4|
5| c = db.cursor()
6|
7| c.execute('CREATE TABLE books (id INTEGER PRIMARY KEY, title

TEXT, author TEXT);')
8| print(c.rowcount)
9|
10| c.execute('INSERT INTO books (id, title, author) VALUES

(?,?,?);', [42, 'Moby Dick', 'Herman Melville'])
11| print(c.rowcount)
12|
13|
14| c.execute('INSERT INTO books (id, title, author) VALUES

(:id, :title, :author);', {'author':'Douglass Adams',
'title':'Restaurant at the End of the Universe', 'id':99})

15| print(c.rowcount)
16|
17| db.commit()
18| db.close()

-1
1
1

You will notice that the insert statements use placeholders (? and :name) to hold the data values. These
placeholders are replaced with the actual data, passed in the second argument as a list or a dictionary.
This insures that values are properly quoted and that special characters are automatically escaped.
Using placeholders in your SQL statements make your program much more secure and easier to write.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 156
Chapter 14 — Relational Databases using the DB-API 2.0

If you have made changes to data, YOU MUST COMMIT the changes or they will not actually be
updated to the database. You will see this being done before the close. Notice that this is not a cursor
action, but an action on the connection.

Executing Statements that Return a Single Row

accessing by numeric location in select

1| import sqlite3
2|
3| db = sqlite3.connect("myfile.sqlite3")
4|
5| c = db.cursor()
6| c.execute('SELECT * FROM books WHERE id = ?;', [99])
7| row = c.fetchone()
8| if row:
9| print(row)
10| print('book', row[0], 'is', row[1])
11| else:
12| print('no data was returned')
13| db.close()

(99, 'Restaurant at the End of the Universe', 'Douglass Adams')
book 99 is Restaurant at the End of the Universe

Executing Statements that Return Many Rows

Two ways

iterate over the connector

Getting Attributes by Name

using a row factory

Executing "Multi" Statements

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 157
Chapter 14 — Relational Databases using the DB-API 2.0

Using MySQL

foo

Summary

Goes here

Important Terms

here

Exercises

Here

Word Search

References

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

