
Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 158
Chapter 15 — Reading Data from the Web

Chapter 15 — Reading Data from the Web

Introduction

This chapter gives a brief introduction to using some modules within the urllib package and an
open-source Python library called BeautifulSoup. The first is used to make URLs and to read data from
a Web server, the later to parse the results and extract data from the HTML.

The urrllib package includes the following modules:

• urllib.request — module to read a stream from a Web server.
• urllib.error — module that handles errors that may happen during a request.
• urllib.parse — module to parse URLs into their parts.
• urllib.robotparser — module to read and parse the ”robots.txt” file on a Web site.

BaautifulSoup 4.8 is the version used in developing this chapter, the simple examples should work with
any 4.7 or greater version.

Objectives

Upon completion of this chapter's exercises, you should be able to:
• Open a request and make a connection to a remote web server.
• Read a stream of bytes from a request.
• Build requests that send data to the remote server using the GET method.
• Build requests that send data to the remote server using the POST method.
• Use a library to select HTML tags based on their CSS selector.
• Get and display attributes and inner text of HTML tags.

Prerequisites

This Chapter requires...

Opening a Request

To read data fro, the web, we must open a connection to an HTTP or HTTPS daemon running on a
network server. As we open that connection, we will ask for a page, document, image, or other item.
The server will return it as a stream of bytes, that we can read into our program.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 159
Chapter 15 — Reading Data from the Web

import urllib.request Module

Import the request module that us part of the urllib package. This module opens a
connection to the web server and allows for retrieval of its output.

https://docs.python.org/3/library/urllib.request.html

urlopen(url) Method of urllib.request

In its simple form, as shown here, it opens a connection to a web server to the
resource specified in the URL. An HTTPResponse object is returned, if the URL
is a HTTP or HTTPS request. The returned object will allow for reading the
returned data.

https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen

read() Method of HTTPResponse
read(amount)

Read is method of HTTPresponse. It waits for the server to respond to the request
and returns an array of bytes with data from the server. You may optionally
specify the maximum number of bytes to reteieve.

https://docs.python.org/3/library/http.client.html#http.client.HTTPResponse.read

In this example, we open this book’s Website and get the first 100 bytes of the home page. In the output
you can see that it is an array of bytes that contains the start of an HTML document.

1| import urllib.request
2|
3| with urllib.request.urlopen("http://www.syw2l.org") as stream:
4| html = stream.read(100)
5| print(html)

b'<!DOCTYPE html>\r\n<html lang="en-US" class="no-js no-svg">\r\
n<head>\r\n\t<meta charset="UTF-8">\r\n\t<meta n'

The second example extends the previous one. The data is read from the server as an array of bytes and
then decoded into a string using the utf-8 encoding. That encoding is very common and was chosen
because of the charset meta in the data.

1| import urllib.request

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://docs.python.org/3/library/http.client.html#http.client.HTTPResponse.read
https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen
https://docs.python.org/3/library/urllib.request.html
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 160
Chapter 15 — Reading Data from the Web

2|
3| with urllib.request.urlopen("http://www.syw2l.org") as stream:
4| # read and decode bytes back to a string
5| html = stream.read(100).decode('utf-8')
6| print(html)

<!DOCTYPE html>
<html lang="en-US" class="no-js no-svg">
<head>

<meta charset="UTF-8">
<meta n

Building a Request With the GET Method

A web client may send data to the web server, by adding it to the end of the URL in key/value pairs.
This is called the GET method. Data sent by appending it to URL, after a question mark, can be cached,
bookmarked, and stored in browser history. Data sent this way should never contain sensitive or private
information. You should only send a limited amount of data using this method.

The urrllib.parse module makes appending data from a Python dictionary, simple. It
automatically encodes characters that have meaning in a URL into their URL safe equivalent. All you
have to do is append a question mark to the end of the URL and then append the encoded data.

This sample program uses a PHP program on one of the author’s servers. The “reflect.php” script
simply takes the data sent o the page, in either the GET or POST method, and returns a page with a
table showing what was sent.

urlencode(dictionary_of_data) Method of urllib.parse

Convert a dictionary of data into a unicode string in the URL format. Key/value
pairs are returned in a format like: key0=value0&key1=vlalue1&key2=value2.

Characters that have special meaning in a URL are converted to a safe format.

link

1| import urllib.request
2| import urllib.parse
3|
4| data = {"user":"jim","email":"jimbo@bogus.domain", "quantity":3}
5| parameters = urllib.parse.urlencode(data)

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 161
Chapter 15 — Reading Data from the Web

6| url = "http://www.basicbook.org/reflect.php?" + parameters
7| print(url)
8|
9| with urllib.request.urlopen(url) as stream:
10| # read and decode bytes back to a string
11| html = stream.read().decode('utf-8')
12| print(html)

http://www.basicbook.org/reflect.php?email=jimbo
%40bogus.domain&quantity=3&user=jim
...

Making a Request With the POST Method

Data sent to a web server, using the POST method, is actually sent as a separate MIME document. The
size limitation of the GET method is removed, a significant amount of data can be sent. If the data is
being sent through an HTTPS connection, sensitive or private information may be sent this way.

In the sample program below, notice that the URL encoded data is converted into plain ASCII.

1| import urllib.request
2| import urllib.parse
3|
4| sendthis = {"user":"jim","email":"jimbo@bogus.domain",

"quantity":3}
5| data = urllib.parse.urlencode(sendthis)
6| data = data.encode('ascii')
7|
8| url = "http://www.basicbook.org/reflect.php"
9| print(url)
10|
11| with urllib.request.urlopen(url, data) as stream:
12| # read and decode bytes back to a string
13| html = stream.read().decode('utf-8')
14| print(html)

http://www.basicbook.org/reflect.php
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Reflect Form Contents To Client</title>

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 162
Chapter 15 — Reading Data from the Web

</head>
<body>

<section>
<h1>Reflect Form Contents To Client</h1>

<table border=1>
<caption>Post variables sent to the server.</caption>
<tr><th>Name</th><th>Value</th></tr>

<tr><td>email</td><td>jimbo@bogus.domain</td></tr><tr><td>quanti
ty</td><td>3</td></tr><tr><td>user</td><td>jim</td></tr>

</table>
</section>

</body>
</html>

Installing BeautifulSoup 4.x

By default, BeautifulSoup is not installed with Python3. Below you will see how to install it on a
Windows system with Python3 installed or on two common LINUX distributions.

Windows

From the Windows command prompt (you may need to open as Administrator) type:

pip install beautifulsoup4

If the 'pip' installer is not installed you may need to:

• Download get-pip.py from https://github.com/pypa/get-pip and save it to a folder.
• Open the Windows command prompt and change into the directory containing get-pip.py.
• python get-pip.py
• pip install beautifulsoup4

Execute

Ubuntu/Debian style LINUX

From a terminal window, like xterm, you may install BeautifulSoup 4.x using pip. If pip is not
available to you, you may install it by using the Debian Advanced Package Tool (apt).

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://github.com/pypa/get-pip
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 163
Chapter 15 — Reading Data from the Web

pip install beautifulsoup4

or

apt-get install python3-bs4

Red Hat/CentOS style LINUX

From a terminal window you may install BeautifulSoup 4.x using pip, or by using the Debian
Advanced Package Tool (apt).

pip install beautifulsoup4

or

yum install python-beautifulsoup4

Parsing HTML and Showing it Nicely

Before using BeautifulSoup, you must import the bs4 library into your program. Once we do this, we
can create an object that will parse our HTML document for us. BeautifulSoup will automatically
convert the page it is asked to process into UTF-8 and will accept the HTML as a string or as a byte
array, as returned by a urllib.request object.

import bs4 Module

Import the BeautifulSoup 4.x library into your program.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#

bs4.BeautifulSoup(source, parser) Object in bs4

The BeautifulSoup object creator takes a minimum of two arguments; the first
should contain either a string or a byte array with the HTML document; the
second needs to be the name of the parser to use to read the page. For most pages,
It is recommended that you use the string ‘html.parser’. There are many
additional options that can be found in the documentation.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#beautifulsoup

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#beautifulsoup
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 164
Chapter 15 — Reading Data from the Web

soup.prettify() Method of BeautifulSoup

The .prettify() method returns a string with HTML that is formatted for
easier reading.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#pretty-printing

The statement, on line 5, creates the BeautifulSoup object. It requires two arguments. The first is the
HTML to parse, and the second is the parser to use. For HTML documents, it is recommended that you
use the ‘html.parser’. The .prettify() method of the BeautifulSoup object will take the
original HTML document and add line breaks and spaces to make the code display nicely.

1| import bs4
2|
3| pg = "<html><head><title>Header Foo</title></head><body><h1>Page

Header</h1><p>para1</p><p>para2</p><p>para3</p></body></html>
"

4|
5| soup = bs4.BeautifulSoup(pg, "html.parser")
6|
7| print(soup.prettify())

<html>
 <head>
 <title>
 Header Foo
 </title>
 </head>
 <body>
 <h1>
 Page Header
 </h1>
 <p>
 para1
 </p>
 <p>
 para2
 </p>
 <p>
 para3
 </p>
 </body>

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#pretty-printing
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 165
Chapter 15 — Reading Data from the Web

</html>

Selecting Elements on a Page

BeautifulSoup 4.7 and versions after includes the ability to use virtually all CSS selectors to find
elements within a page. There are additional methods to find element, but this introduction will just
cover one. Before we show how to get an element in BeautifulSoup, we will start with a short
introduction in creating CSS selectors and how to combine them.

Simple CSS Selectors

Cascading Style Sheets (CSS) consist of selectors that are used to match to elements on a page,
followed by rules to apply to the presentation of those tags. Simple CSS selectors fall into four groups:

 1. The general selector gets everything.
 a) *

 2. Tag selectors that use a tag name and apply to all tags of that type, like:
 a) a
 b) p
 c) h1

 3. Id selectors, starting with a #, that select a tag with that specific id:
 a) #page_name
 b) #author

 4. Class selectors, beginning with a period (.), that will select the tags that have that class
assigned:
 a) .important_items
 b) .cruddystuff

Some CSS Combiantors

There are also many ways to combine simple selectors into complex selectors that can be used to zero
in on specific tags. The list below shows a few of the CSS combinators, but it by no means is complete.

• This and That Combinator
selector_one, selector_two
Using a comma (,) to separate selectors will select either. The selector “h1, h2” would return a
list of both the h1 and h2 elements on a page.

• Descendant Combinator
selector_one selector_two

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 166
Chapter 15 — Reading Data from the Web

By placing a space () between selectors you select inside the previous select. The selector
“#masthead a” would return the anchors inside the block element with the id of “masthead”.

• Adjacent Sibling Combinator
selector_one + selector_two
Use a plus (+) between selectors to find the element directly after the first selector on the same
level. This finds siblings not children. The selector “.stuff p” would find the paragraph that
directly follow elements with the class “stuff”.

• General Sibling Combinator
selector_one ~ selector_two
When you put a tilde (~) between selectors you get all of the second one after the first on the
same structural level. The selector “#chapter_one ~ p” would get all of the paragraphs following
chapter_one. The siblings do not have to be adjacent, just follow.

• Direct Children Combinator
selector_one > selector_two
A greater than (>) directs CSS to look for direct children, elements directly within another
element. The selector “a > img” would return image tags that are directly inside anchor tags,
and no others. This only gets direct children and not children of children.

There are additional CSS selectors, combinators, pseudo-tags, and other features that are beyond the
scope of this. Please see one of the many CSS selector references on-line.

Using a CSS Selector in BeautifulSoup

The .select() method of BeautifulSoup uses a CSS selector and returns a collection of elements
that meet the selection criteria. If there are no elements that meet the criteria, then an empty collection
will be returned. You may test for a non-empty collection by using the len() function or by using an
if statement, from earlier in the book.

soup.select(css_selector) Method of BeautifulSoup

This method returns an iterable collection of elements on the page that were
selected based upon the CSS selector passed. If no elements are retrieved an
empty colelction will be returned.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors

1| import urllib.request
2| import bs4
3|
4| with urllib.request.urlopen("http://www.syw2l.org") as stream:
5| html = stream.read()

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 167
Chapter 15 — Reading Data from the Web

6| soup = bs4.BeautifulSoup(html, 'html.parser')
7|
8| # get first paragraph inside a tag with a class of site-info
9| # remember to use the indexing operator to get the first one
10| print('********** get first paragraph in site_info')
11| tag = soup.select(".site-info p")[0]
12| print(tag)
13|
14| # find all img tags
15| print("********** all em tags on page")
16| for tag in soup.select("em"):
17| print(tag)

********** get first paragraph in site_info
<p>C) 2019 J.M.Reneau - All Rights Reserved - Wordpress design
by <a href="https://www.luzuk.com/"
target="_blank">Luzuk</p>
********** all em tags on page
So you Want to Learn to Program – BASIC-256 – Book

An Introduction to STEM Programming with Python 3 –
Book

Getting Text and Attributes from Elements

In the previous example we can see each of the HTML tags found, and we printed out the HTML we
found. Now that we have our list of tags, from select, let’s get attributes from a tag and the text

The following sample program shows two ways to get attributes of a HTML statement, and two ways
to get the inner stuff.

soup_element[attr_name] BeautifulSoup Element Operator

The indexing operator, on an element, will get an attributes value. If the attributed
does not exist, an error will be thrown. If the attribute is optional, it is recommended
that the .get() method of generic collections be used, with a default value.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start

soup_element.string BeautifulSoup Element Property

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 168
Chapter 15 — Reading Data from the Web

This property returns the string value between the opening tag and the closing tag. If
there is ANY HTML inside the tags, this property will return the Python None value.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#navigablestring

soup_element.get_text() BeautifulSoup Method

This property returns the text found inside a pair of tags with the HTML stripped out.
This method is very useful for getting the text of a paragraph or other tgs.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#get-text

1| import urllib.request
2| import bs4
3|
4| page = """
5| <!DOCTYPE html>
6| <html lang='en'>
7| <head>
8| <title>Test Page With Table</title>
9| <style>
10| body { background-color: #dddddd; }
11| </style>
12| </head>
13| <body>
14| <h1>A table</h1>
15| <table>
16| <tr><th>Fruit</th><th>Color</th></tr>
17| <tr><td>Banana</td><td>Yellow</td></tr>
18| <tr><td>Lemon</td><td>Yellow</td></tr>
19| <tr><td>Orange</td><td>Orange</td></tr>
20| </table>
21| <h1>Links</h1>
22|
23| The Book's Web Site
24| Beautif
ul Soup

25| python
26|
27| </body>
28| </html>

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#get-text
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#navigablestring
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 169
Chapter 15 — Reading Data from the Web

29| """
30|
31| soup = bs4.BeautifulSoup(page, 'html.parser')
32|
33| # get the linked pages from te anchors on page
34| tags = soup.select('a')
35| for tag in tags:
36| print(tag['href'])
37|
38| # get the attribute language from the html tag
39| # it may not exist - if not use unknown
40| tag = soup.select("html")[0]
41| print("this page's language is", tag.get('lang','unknown'))
42|
43| # create a comma separated printout of the
44| # string content of all th and td tags
45| rows = soup.select("table tr")
46| for row in rows:
47| cols = row.select("th,td")
48| print(cols[0].string, ',', cols[1].string)
49|
50| # show text on first row - strip out all html
51| print(rows[0].text)

http://www.syw2l.org
https://www.crummy.com/software/BeautifulSoup/
http://www.python.org
this page's language is en
Fruit , Color
Banana , Yellow
Lemon , Yellow
Orange , Orange
FruitColor

Another example that gets the current weather observation at an airport from the U.S. National Weather
Service, follows:

1| import bs4
2| import urllib.request
3|
4| #change city code to four letter US airport code
5| # KLAX-Los Angeles, KJFK-New York City, KDWU - Ashland Kentucky
6| city = "KDWU"

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 170
Chapter 15 — Reading Data from the Web

7| url = "https://w1.weather.gov/obhistory/"+ city+ ".html"
8|
9| print(url)
10|
11| with urllib.request.urlopen(url) as stream:
12| html = stream.read()
13| soup = bs4.BeautifulSoup(html, 'html.parser')
14|
15| # get the actual name from the first element with
16| # class name of "white1"
17| cityname = soup.select(".white1")[0].get_text()
18|
19| # find the first table row with a bakground color of

"#eeeeee"
20| # is is the most recent observation
21| datarow = soup.select('tr[bgcolor="#eeeeee"]')[0]
22|
23| # get cells from the row
24| cells = datarow.select("td")
25|
26| # print out weather
27| print("At the", cityname,
28| 'at', cells[1].text,
29| 'it is', cells[4].text,
30| 'with a tempature of', cells[6].text,
31| 'and a relative humidity of', cells[10].text,
32| '.')

https://w1.weather.gov/obhistory/KDWU.html
At the Ashland Regional Airport at 22:56 it is Fair with a
tempature of 73 and a relative humidity of 76% .

Summary

Goes here

Important Terms

here

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 171
Chapter 15 — Reading Data from the Web

Exercises

Here

Word Search

References

https://docs.python.org/3/library/urllib.html
https://www.w3schools.com/tags/ref_httpmethods.asp
https://en.m.wikipedia.org/wiki/MIME
https://www.crummy.com/software/BeautifulSoup

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://www.crummy.com/software/BeautifulSoup
https://en.m.wikipedia.org/wiki/MIME
https://www.w3schools.com/tags/ref_httpmethods.asp
https://docs.python.org/3/library/urllib.html
http://creativecommons.org/licenses/by-sa/4.0/

