
Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 16
Chapter 2 — Numbering Systems

Chapter 2 — Numbering Systems

Introduction

This chapter discusses numbering systems and shows how the computer stores numbers. Manually
converting between decimal, binary, and hexadecimal is demonstrated using the remainder and
positional methods. Using Python to convert from the three bases, and how to enter integers into your
program in the various bases I also shown.

Objectives

Upon completion of this chapter's exercises, you should be able to:
• Recognize decimal, binary, and hexadecimal numbers.
• Define binary and hexadecimal constant numbers in Python using the 0b or 0x prefix.
• Convert numbers from decimal to binary and hexadecimal using the remainder method.
• Calculate the decimal value from a binary or hexadecimal number using the positional method.
• Use Python's built in functions to convert decimal numbers to strings containing binary and

hexadecimal.
• Perform the operations of addition and subtraction of binary numbers, using the twos'

compliment when necessary.

Prerequisites

This Chapter requires most of the concepts from Chapter 1; including: basic operations, integers,
variables, and the special integer operations.

Ten Fingers

Think about what a number really means...

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 17
Chapter 2 — Numbering Systems

Counting on our fingers, comes naturally to most of us. Early counting was done making marks with a
stick in the dirt or a pencil on a piece of paper. It is easier to make groupings of marks into “scores”
like:

Imagine for a moment if humans were born with 8 or 12 fingers, how different would counting have
been?

To express numbers greater than the number of fingers we have, people developed the positional
notation. It allows us to write large numbers by creating places for tens, hundreds, thousands, and
larger powers of 10 (Positional Notation, 2016).

In this discussion we will write the numeric base of a number as a subscript after a number or with a
prefix so that we can always be sure of how to interpret the number. Numbers that does not have
markings (either before or after) it can be assumed to be base 10.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

Illustration 7:
Counting to Eight the
Hard Way

Illustration 6: Counting On Your
Fingers

1

234
56

789

10

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 18
Chapter 2 — Numbering Systems

The Decimal System

The decimal system uses a base of 10 (like our fingers) to express numbers in a positional notation. For
example lets look at the number 37510 , It represents 3 groups of a hundred, 7 groups of ten, and five
singles. We can also represent the number as:

37510=3×100+7×10+5×1 or 37510=3×10
2+3×101+5×100

In Python we can write this as

1| print(3 * 10**2 + 7 * 10 + 5)

It is important that we understand that a digit, to the left, is another power of the base. This will become
apparent as we move into other bases for numbers. The same principle happens when there is a decimal
point, except that the power of 10 becomes negative.

3.141510=3×10
0+1×10−1+4×10−2+1×10−3+5×10−4

In Python we could write this as

1| print(3 + 1*10**-1 + 4*10**-2 + 10**-3 +5*10**-4)

3.1415

The Binary System

The earliest of computers started with a few on-off switches and as they became more complex they
continued to add digits. Current microprocessors have 64 digits, or bits. Instead of using a base N
numbering system that would change every time we added digits, early computer scientists represented
numbers in base 2 (binary). We still use the base 2 positional notation in the most modern of machines.

In the binary system (base 2) each digit can be either a zero (0) or one (1) and each time we move left
the power of two increases.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 19
Chapter 2 — Numbering Systems

Power of 2 Decimal

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

Table 1: Powers of Two

If we number our fingers in the manner shown in the figure (above). We can count any number from 0-
1023 on ten fingers. If all fingers are down we are at zero. On your right-hand can we represent 10?
On both hands, 100?

A modern computer with a 64 bit processor (64 fingers) can count to a number over 18 quintillion (0 to
18,446,744,073,709,551,615) on one hand. With this example it becomes obvious why binary was
selected for early computing.

10102=1×2
3+0×22+1×21+0×20≡1010

In Python we can write that expression as, remembering that anything times zero is zero and anything
times one is just itself:

1| print(2**3 + 2**1)

10

Converting Decimal to Binary (Remainder Method)

To convert from decimal to binary we will use a simple process of integer division. Let's start with an
example:

Convert 10110 to binary (base 2):

101 / 2 = 50 r 1 1

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 20
Chapter 2 — Numbering Systems

50 / 2 = 25 r 0 01

25 / 2 = 12 r 1 101

12 / 2 = 6 r 0 0101

6 / 2 = 3 r 0 00101

3 / 2 = 1 r 1 100101

1 / 2 = 0 r 1 1100101
10110 = 11001012

To convert, using the remainder method, we divide our base 10 number by the base we wish to convert
it into (in this case 2). The remainder of that division becomes the next digit as we build the new
number. The result of the division is used until it is zero.

In Python we can assign a variable to the decimal value and use the special integer operations of
modulo (remainder) and integer division to go through the process for us. In the code you will see that
we first find the remainder, find the quotient, print it out, then do it again. We read the answer from the
bottom up.

1| n = 101
2| r = n % 2
3| n = n //2
4| print(n,r)
5| r = n % 2
6| n = n //2
7| print(n,r)
8| r = n % 2
9| n = n //2
10| print(n,r)
11| r = n % 2
12| n = n //2
13| print(n,r)
14| r = n % 2
15| n = n //2
16| print(n,r)
17| r = n % 2
18| n = n //2
19| print(n,r)
20| r = n % 2
21| n = n //2
22| print(n,r)

50 1

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 21
Chapter 2 — Numbering Systems

25 0
12 1
6 0
3 0
1 1
0 1

There is an easier way to do it in Python using something called a while loop. We will learn exactly
how they work in a future chapter, but now would be a good time to show a preview. The while
statement repeats the suite, of three lines of code, while n is not zero. We will see the while statement
in future chapters, but it makes the program much smaller. The example below will work for virtually
any positive integer, just change the first line.

1| n = 101
2| while(n):
3| r = n % 2
4| n = n //2
5| print(n,r)

50 1
25 0
12 1
6 0
3 0
1 1
0 1

Another Example:

Convert 364 to binary.
364 / 2 = 182 r 0 0

182 / 2 = 91 r 0 00

91 / 2 = 45 r 1 100

45 / 2 = 22 r 1 1100

22 / 2 = 11 r 0 01100

11 / 2 = 5 r 1 101100

5 / 2 = 2 r 1 1101100

2 / 2 = 1 r 0 01101100

1 / 2 = 0 r 1 101101100

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 22
Chapter 2 — Numbering Systems

And in Python we can do it, like:

1| n = 364
2| while(n):
3| r = n % 2
4| n = n //2
5| print(n,r)

182 0
91 0
45 1
22 1
11 0
5 1
2 1
1 0
0 1

Binary to Decimal (Positional Method)

To convert a binary number back to a decimal number we need to know our powers of 2 and just add
them together.

If the binary number 101101101 actually represents
1×28+0×27+1×26+1×25+0×24+1×23+1×22+0×21+1×20 , then we should be able to add up the

powers of two that are multiplied by 1 and ignore the powers multiplied by zero. So,
1011011012=1×2

8+1×26+1×25+1×23+1×22+1×20=256+64+32+8+4+1=36510 .

Examples:

Convert 1001010112 to decimal:

1 0 0 1 0 1 0 1 1

256 32 8 2 1

29910

In Python we could write

1| print(2**8 + 2**5 + 2**3 + 2 + 1)

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 23
Chapter 2 — Numbering Systems

299

Binary in Python

In Python, you may directly include binary integers exactly the same as you would a decimal number.
You just need to add a "0b" to the front of the number so that Python knows it is not a decimal number.
In the example below, you see the difference adding the "0b" prefix does. Print usually outputs a
number in decimal.

1| print(0b110101)
2| print(110101)

53
110101

Python will convert a decimal number into a string of binary digits, using the bin() function. You
will be able to print it out, but the result is no longer a number and can not be directly used in
mathematics.

bin(expression) Function

The bin function will return a string of binary digits prefixed with '0b'
representing the number passed.

https://docs.python.org/3.7/library/functions.html#bin
http://bit.ly/2Sl6d9Q

1| print(bin(42))

0b101010

Hexadecimal

A base 16 number is also called a hexadecimal number. Each digit represents a value from 0 to 15.
Because we do not have single symbols for 10-15, we use the letters A-F to represent them.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://bit.ly/2Sl6d9Q
https://docs.python.org/3.7/library/functions.html#bin
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 24
Chapter 2 — Numbering Systems

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F
Table 2: Hexadecimal Digits

Hexadecimal is used as a briefer way to represent binary. Each digit in “Hex” represents 4 digits in
binary. Hexadecimal numbers are often written with a “#” or “0x” in front of them.

Hexadecimal to Binary and Binary to Hexadecimal

Because 16 is an even power of 2. We can group out binary number into 4s and then convert those
blocks into Hexadecimal.

Examples:

Convert 101010101100112 to hexadecimal:

10 1010 1011 0011 = 0x2AB3

Convert 0xFEF9 to binary:

F = 11111 E = 1110 9 = 1001, so 0xFEF9 = 11111110111110012

Converting Decimal to Hexadecimal (Remainder Method)

The process for converting a decimal number to Hexadecimal is the same as used to convert it to a
binary number except that we divide by 16: If the remainder is 10-15 we use the letters A-F in the
result.

Example:

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 25
Chapter 2 — Numbering Systems

Convert 63987 to Hexadecimal:

63987 / 16 = 3999 r 3 ___3

3999 / 16 = 249 r 15 __F3

249 / 16 = 15 r 9 _9F3

15 / 16 = 0 r 15 F9F3

In Python we can convert to base 16 using code just like we did to convert to binary. We find the
remainder from 26 and divide by 26. Reading the remainders from bottom to top.

1| n=63987
2| r = n % 16
3| n = n //16
4| print(n,r)
5| r = n % 16
6| n = n //16
7| print(n,r)
8| r = n % 16
9| n = n //16
10| print(n,r)
11| r = n % 16
12| n = n //16
13| print(n,r)

3999 3
249 15
15 9
0 15

This can also be written using the while loop to simplify.

1| n=63987
2| while(n):
3| r = n % 16
4| n = n //16
5| print(n,r)

Hexadecimal to Decimal (Positional Method)

We can also convert from Hexadecimal to decimal by using the powers of 16.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 26
Chapter 2 — Numbering Systems

Power of 16 Decimal Power of 16 Decimal

160 1 164 65,536

161 16 165 1,048,576

162 256 166 16,777,216

163 4,096 167 268,435,456

Table 3: Powers of 16

Hexadecimal in Python

In Python, you may directly include base 16 integers exactly the same as you would a decimal number.
You just need to add a "0x" to the front of the number so that Python knows it is not a string or a
decimal number. You will use the symbols 0-9 for 0-9 and a-f for 10-15. The "0x" prefix is not case-
sensitive and the letters a-f may also be in upper and lower case. In the example below, you see the
difference adding the "0x" prefix does. Print will always out a number as a decimal.

1| print(0X42, 0Xff, 0xfffa, 0XABBACAB)

66 255 65530 180071595

Python will convert a decimal number into a hexadecimal string, using the hex() function. You will
be able to print it out, but the result is no longer a number and can not be directly used in mathematics.

hex(expression) Function

The hex function will return a string of hexadecimal digits prefixed with '0x'
representing the number passed.

https://docs.python.org/3.7/library/functions.html#hex
http://bit.ly/2EMo6dJ

1| print(hex(42))

0x2a

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://bit.ly/2EMo6dJ
https://docs.python.org/3.7/library/functions.html#hex
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 27
Chapter 2 — Numbering Systems

Binary Addition

We add binary numbers the same way that we add decimal numbers. Write them aligned positionally,
start on the right and add each column, If the column exceeds, carry the extra to the next column.

Example:

Add 1012 to 10012.

 101
1001

Add ones' column 1+1=10, carry the 1 to the twos' column.

 1
 101
1001
 0

Add twos' column 1+0+0=1.

 1
 101
1001
 10

Add fours' column 1+0=1.

 1
 101
1001

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Text 1: Binary Addition

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 28
Chapter 2 — Numbering Systems

 110

Add sixteens' column 1+0=1.

 1
 101
1001
1110

Twos' Compliment — Negative Binary Numbers

In our discussion so far we have not talked about how computers handle negative numbers. All of the
numbers we have been working with are positive counting numbers. Computers typically store negative
numbers as a “Twos' compliment” number.

To calculate a twos' compliment of a positive number (to negate a number) we need to know how many
bits (or digits) that the processor used to do binary mathematics. To do the conversion: 1) write the
binary number out with zeros padded on the left to the proper width, 2) subtract one, 3) change all 0s to
1s and 1s to 0s.

If the computer word size is N bits then numbers from the range of −2N−1≤X≤2N−1−1 mat be
expressed as twos' compliment numbers.

Example:

Assuming a word size of 8 bits we can calculate the twos' compliment of the binary number 10111:

 10111
00010111 — pad on left to word size
00010110 — subtract one
11101001 — change all 1 to 0 and 0 to 1

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 29
Chapter 2 — Numbering Systems

Binary Decimal Binary Decimal
1000 -8 0000 0

1001 -7 0001 1

1010 -6 0010 2

1011 -5 0011 3

1100 -4 0100 4

1101 -3 0101 5

1110 -2 0110 6

1111 -1 0111 7

Table 4: Twos' Compliment Numbers

Subtraction of Binary Numbers (Using Twos' Compliment)

The easiest method for subtracting two binary numbers oi to convert one of them to the twos'
compliment and add them.

Example:

Given a 4 bit processor subtract 3 from 7:

 0111 — decimal 7
 1101 — twos' compliment of 3

 10100 — add
 0100 — ignore the last carry bit — answer is decimal 4

Summary

Summary goes here

Important Terms

• addition • binary • bit

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 30
Chapter 2 — Numbering Systems

• compliment
• decimal
• hexadecimal

• positional
• remainder
• sixteen

• subtraction
• ten
• two

Exercises

1. Convert the decimal number 123 to binary using the remainder method. Check your answer with a
short Python program to print the binary number.

2. Convert the decimal number 983 to binary using the remainder method. Check your answer with a
short Python program to print the binary number.

3. Convert the binary number 10111010 to decimal using the powers of two for the position of each
one. Check your answer with a short Python program to print the decimal number.

4. Convert the binary number 1001101 to decimal using the powers of two for the position of each one.
Check your answer with a short Python program to print the decimal number.

5. Convert the binary number 10100011 to hexadecimal by grouping the binary digits using. Check
your answer with a short Python program to print the hexadecimal number.

6. Convert the binary number 1000111110 to hexadecimal by grouping the binary digits using. Check
your answer with a short Python program to print the hexadecimal number.

7. Convert the hexadecimal number 0x92 to binary and then to decimal. Check your answer with a
short Python program to print the number as binary and hexadecimal.

8. Convert the hexadecimal number 0x12a7 to binary and then to decimal. Check your answer with a
short Python program to print the number as binary and hexadecimal.

9. Perform binary addition of:

 101101
+ 1001

9. Perform binary addition of:

 10101101
+ 1110

10. Calculate the 8 bit twos-compliment of 7, 22, and 89.

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 31
Chapter 2 — Numbering Systems

11. Calculate the 16 bit twos-compliment of 592, 1024, 30000.

12. Perform binary subtraction by calculating the twos-compliment of the subtrahend and adding the
two 8 bit numbers:

 11001100
-00011010

13. Perform binary subtraction by calculating the twos-compliment of the subtrahend and adding the
two 16 bit numbers:

 0011 1100 0000 0011
-0011 0100 1111 1110

Word Search

s c o m p l i m e n t t b
d e c i m a l · b b k · i
n g g w o · r p z a j x n
a q t r e m a i n d e r a
b x n t e n g f k · k l r
h m p a d d i t i o n k y
s u b t r a c t i o n t e
q z e j s i x t e e n w v
h e x a d e c i m a l o h
h s s k o b j r · c a l d
b i t o t d a y b k x · t
p o s i t i o n a l k c p
l a i z a g · · a s i l w

addition, binary, bit, compliment, decimal, hexadecimal, positional, remainder, sixteen, subtraction, ten,
two

References

Positional Notation. (2016). Wikipedia. Retrieved 2016-04-02 from
https://en.wikipedia.org/wiki/Positional_notation

Hand Images (Right Hand and Left Hand). (2007). By Johnny Automatic. Retrieved 2016-04-03 from
https://openclipart.org/detail/7580/right-hand and https://openclipart.org/detail/7531/left-hand

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
https://openclipart.org/detail/7531/left-hand
https://openclipart.org/detail/7580/right-hand
https://en.wikipedia.org/wiki/Positional_notation
http://creativecommons.org/licenses/by-sa/4.0/

Free
eBook
Edition

Free
eBook
Edition

Please support this work at
http://syw2l.org

An Introduction to STEM Programming with Python — 2019-09-03a Page 32
Chapter 2 — Numbering Systems

Copyright 2019 — James M. Reneau Ph.D. — http://www.syw2l.org — This work is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License.

http://www.syw2l.org/
http://creativecommons.org/licenses/by-sa/4.0/

