An Introduction to STEM Programming with Python 3 - Chapter 2 Other Bases - Binary

> By
> James M. Reneau, Ph.D.
> jreneau@shawnee.edu

Version 2019-12-12a

Shawnee State

 UniversityC) 2019 James M. Reneau

This work is licensed under a Creative Commons Attribution-NonCommercialShareAlike 4.0 International License.

In this video we will cover:

* Decimal numbers (BASE 10)
* The positional notation for representing numbers
* Binary numbers (BASE 2)
* The remainder method for converting decimal to binary.
* The positional method for converting binary to decimal
* Binary numbers in Python

Decimal Numbers

- Decimal numbers use a base of 10 .
- We write large numbers using a positional notation.
- For numbers on the left of the decimal point we increase the power of 10
- For numbers on the right of the decimal point we
 decrease the power of 10

Decimal Numbers

- Using the positional notation:
- 123.45 can be written as

$$
1 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}+4 \times 10^{-1}+5 \times 10^{-2}
$$

- And 987654321 can be written as
$9 \times 10^{8}+8 \times 10^{7}+7 \times 10^{6}+6 \times 10^{5}+5 \times 10^{4}$
$+4 \times 10^{3}+3 \times 10^{2}+2 \times 10^{1}+1 \times 10^{0}$

Binary - Base 2

- The computer was born without hands but it has switches that are
- either on or off - 1 or 0
- If you can only count using a positional sequence of 1 or 0 we would call that base 2 - Binary
- Instead of using powers of 10 the computer represents numbers using powers of 2

Binary Numbers

- Using the positional notation for understanding and converting binary back to decimal:
- 10110_{2} can be thought of as
- $1 x 2^{4}+0 x 2^{3}+1 x 2^{2}+1 x 2^{1}+0 x 2^{0}$
$16+4+2$
22_{10}
- And 111101_{2} can be written as
$1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$32+16+8+4+1$

Powers of 2

- $2^{0}=1$
- $2^{1}=2$
- $2^{2}=4$
- $2^{2}=8$
- $2^{4}=16$
- $2^{5}=32$
- $2^{6}=64$
- $2^{7}=128$
- $2^{8}=256$
- $2^{9}=512$
- $2^{10}=1024$
- $2^{11}=2048$
- $2^{12}=4096$
- $2^{13}=8192$
- $2^{14}=16384$
- $2^{15}=32768$

Converting Decimal to Binary Remainder Method

- Convert 101_{10} to binary

$$
\begin{aligned}
& 101 / 2=50 \text { r } 1 \\
& 50 / 2=25 r 0 \\
& 25 / 2=12 r 1 \\
& 12 / 2=6 r 0 \\
& 6 / 2=3 \mathrm{r} 0 \\
& 3 / 2=1 \mathrm{r} 1 \\
& 1 / 2=0 \mathrm{r} 1
\end{aligned}
$$

- Write the remainders in the reverse order you calculated them
- 1100101_{2}

Binary in Python

- Binary literal
- Prefix the binary number with "0b"
- Convert decimal integer to binary
- bin(number)
- Function takes integer and returns a string (with the 0b)

Binary in Python

```
1 # binary literal
a = 0.b1011010
3 print(a)
5 # convert decimal to binary string
6 x = 98989
7 print(bin(x))
```

90
0b11000001010101101

```
4
```


Thank you

1 This presentation is Copyright 2019 by James M. Reneau PhD.
2 Contact me at jreneau@shawnee.edu
3 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

